Anthony Persechini
University of Texas Southwestern Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anthony Persechini.
Journal of Biological Chemistry | 2009
Quang-Kim Tran; Jared Leonard; D. J. Black; Owen W. Nadeau; Igor G. Boulatnikov; Anthony Persechini
We have investigated the possible biochemical basis for enhancements in NO production in endothelial cells that have been correlated with agonist- or shear stress-evoked phosphorylation at Ser-1179. We have found that a phosphomimetic substitution at Ser-1179 doubles maximal synthase activity, partially disinhibits cytochrome c reductase activity, and lowers the EC50(Ca2+) values for calmodulin binding and enzyme activation from the control values of 182 ± 2 and 422 ± 22 nm to 116 ± 2 and 300 ± 10 nm. These are similar to the effects of a phosphomimetic substitution at Ser-617 (Tran, Q. K., Leonard, J., Black, D. J., and Persechini, A. (2008) Biochemistry 47, 7557–7566). Although combining substitutions at Ser-617 and Ser-1179 has no additional effect on maximal synthase activity, cooperativity between the two substitutions completely disinhibits reductase activity and further reduces the EC50(Ca2+) values for calmodulin binding and enzyme activation to 77 ± 2 and 130 ± 5 nm. We have confirmed that specific Akt-catalyzed phosphorylation of Ser-617 and Ser-1179 and phosphomimetic substitutions at these positions have similar functional effects. Changes in the biochemical properties of eNOS produced by combined phosphorylation at Ser-617 and Ser-1179 are predicted to substantially increase synthase activity in cells at a typical basal free Ca2+ concentration of 50–100 nm.
Biochemistry | 2008
Quang-Kim Tran; Jared Leonard; D. J. Black; Anthony Persechini
We have investigated the effects of phosphorylation at Ser-617 and Ser-635 within an autoinhibitory domain (residues 595-639) in bovine endothelial nitric oxide synthase on enzyme activity and the Ca (2+) dependencies for calmodulin binding and enzyme activation. A phosphomimetic S617D substitution doubles the maximum calmodulin-dependent enzyme activity and decreases the EC 50(Ca (2+)) values for calmodulin binding and enzyme activation from the wild-type values of 180 +/- 2 and 397 +/- 23 nM to values of 109 +/- 2 and 258 +/- 11 nM, respectively. Deletion of the autoinhibitory domain also doubles the maximum calmodulin-dependent enzyme activity and decreases the EC 50(Ca (2+)) values for calmodulin binding and calmodulin-dependent enzyme activation to 65 +/- 4 and 118 +/- 4 nM, respectively. An S635D substitution has little or no effect on enzyme activity or EC 50(Ca (2+)) values, either alone or when combined with the S617D substitution. These results suggest that phosphorylation at Ser-617 partially reverses suppression by the autoinhibitory domain. Associated effects on the EC 50(Ca (2+)) values and maximum calmodulin-dependent enzyme activity are predicted to contribute equally to phosphorylation-dependent enhancement of NO production during a typical agonist-evoked Ca (2+) transient, while the reduction in EC 50(Ca (2+)) values is predicted to be the major contributor to enhancement at resting free Ca (2+) concentrations.
Biochemistry | 2010
D. J. Black; Anthony Persechini
We have replaced the semiconserved Gly in the IQ domain consensus sequence with Ala, Arg, or Met in a reference sequence and determined how this affects its complexes with calmodulin. The K(d) for the Ca(2+)-free reference complex is 2.4 +/- 0.3 microM. The Ala and Arg replacements increase this to 5.4 +/- 0.4 and 6.2 +/- 0.5 microM, while the Met increases it to 26.4 +/- 2.5 microM. When Ca(2+) is bound to both calmodulin lobes, the K(d) for the reference complex is not significantly affected, but the K(d) for the Ala variant decreases to 0.9 +/- 0.04 microM, and the values for the Arg and Met variants decrease to 0.4 +/- 0.03 microM. Using mutant calmodulins, we defined the effect of Ca(2+) binding to each lobe, with the C-terminal preceding the N-terminal (C-->N) or vice versa (N-->C). In the C-->N order the first step increases the reference K(d) approximately 5-fold, while it decreases the values for the variants approximately 2- to approximately 10-fold. The second step decreases the K(d) values for the all of the complexes approximately 5-fold, suggesting that the N-terminal lobe does not interact with the semiconserved position after the first step. In the N-->C order the first step increases the K(d) values for the reference complex and Met and Ala variants approximately 15- to approximately 200-fold but does not affect the value for the Arg variant. The second step decreases the K(d) values for the reference and Arg variant approximately 10- and approximately 15-fold and the Ala and Met variants approximately 2000-fold. Thus, both steps in the N-->C order are sensitive to variations at the semiconserved position, while only the first is in the C-->N order. Due to energy coupling, this order is followed under equilibrium conditions.
Journal of Biological Chemistry | 1985
Anthony Persechini; James T. Stull; Roger Cooke
Journal of Biological Chemistry | 1986
Anthony Persechini; Kristine E. Kamm; James T. Stull
Biochemistry | 1984
Anthony Persechini; James T. Stull
Biochemistry | 1996
Anthony Persechini; Krista J. Gansz; Robert J. Paresi
Biochemistry | 2006
D. J. Black; Jared Leonard; Anthony Persechini
Progress in Clinical and Biological Research | 1987
Kristine E. Kamm; S. A. Leachman; Carolyn H. Michnoff; Mary H. Nunnally; Anthony Persechini; A. L. Richardson; James T. Stull
Biochemistry | 2009
D. J. Black; David LaMartina; Anthony Persechini
Collaboration
Dive into the Anthony Persechini's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs