Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony Possemato is active.

Publication


Featured researches published by Anthony Possemato.


Cell | 2007

Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer

Klarisa Rikova; Ailan Guo; Qingfu Zeng; Anthony Possemato; Jian Yu; Herbert Haack; Julie Nardone; Kimberly Lee; Cynthia Reeves; Yu Li; Yerong Hu; Zhiping Tan; Matthew P. Stokes; Laura Sullivan; Jeffrey Mitchell; Randy Wetzel; Joan MacNeill; Jian Min Ren; Jin Yuan; Corey E. Bakalarski; Judit Villén; Jon M. Kornhauser; Bradley L. Smith; Daiqiang Li; Xinmin Zhou; Steven P. Gygi; Ting Lei Gu; Roberto D. Polakiewicz; John Rush; Michael J. Comb

Despite the success of tyrosine kinase-based cancer therapeutics, for most solid tumors the tyrosine kinases that drive disease remain unknown, limiting our ability to identify drug targets and predict response. Here we present the first large-scale survey of tyrosine kinase activity in lung cancer. Using a phosphoproteomic approach, we characterize tyrosine kinase signaling across 41 non-small cell lung cancer (NSCLC) cell lines and over 150 NSCLC tumors. Profiles of phosphotyrosine signaling are generated and analyzed to identify known oncogenic kinases such as EGFR and c-Met as well as novel ALK and ROS fusion proteins. Other activated tyrosine kinases such as PDGFRalpha and DDR1 not previously implicated in the genesis of NSCLC are also identified. By focusing on activated cell circuitry, the approach outlined here provides insight into cancer biology not available at the chromosomal and transcriptional levels and can be applied broadly across all human cancers.


Molecular Cell | 2011

Systematic and Quantitative Assessment of the Ubiquitin-Modified Proteome

Woong Kim; Eric J. Bennett; Edward L. Huttlin; Ailan Guo; Jing Li; Anthony Possemato; Mathew E. Sowa; Ramin Rad; John Rush; Michael J. Comb; J. Wade Harper; Steven P. Gygi

Despite the diverse biological pathways known to be regulated by ubiquitylation, global identification of substrates that are targeted for ubiquitylation has remained a challenge. To globally characterize the human ubiquitin-modified proteome (ubiquitinome), we utilized a monoclonal antibody that recognizes diglycine (diGly)-containing isopeptides following trypsin digestion. We identify ~19,000 diGly-modified lysine residues within ~5000 proteins. Using quantitative proteomics we monitored temporal changes in diGly site abundance in response to both proteasomal and translational inhibition, indicating both a dependence on ongoing translation to observe alterations in site abundance and distinct dynamics of individual modified lysines in response to proteasome inhibition. Further, we demonstrate that quantitative diGly proteomics can be utilized to identify substrates for cullin-RING ubiquitin ligases. Interrogation of the ubiquitinome allows for not only a quantitative assessment of alterations in protein homeostasis fidelity, but also identification of substrates for individual ubiquitin pathway enzymes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Signaling networks assembled by oncogenic EGFR and c-Met.

Ailan Guo; Judit Villén; Jon M. Kornhauser; Kimberly Lee; Matthew P. Stokes; Klarisa Rikova; Anthony Possemato; Julie Nardone; Gregory Innocenti; Randall K. Wetzel; Yi Wang; Joan MacNeill; Jeffrey Mitchell; Steven P. Gygi; John Rush; Roberto D. Polakiewicz; Michael J. Comb

A major question regarding the sensitivity of solid tumors to targeted kinase inhibitors is why some tumors respond and others do not. The observation that many tumors express EGF receptor (EGFR), yet only a small subset with EGFR-activating mutations respond clinically to EGFR inhibitors (EGFRIs), suggests that responsive tumors uniquely depend on EGFR signaling for their survival. The nature of this dependence is not understood. Here, we investigate dependence on EGFR signaling by comparing non-small-cell lung cancer cell lines driven by EGFR-activating mutations and genomic amplifications using a global proteomic analysis of phospho-tyrosine signaling. We identify an extensive receptor tyrosine kinase signaling network established in cells expressing mutated and activated EGFR or expressing amplified c-Met. We show that in drug sensitive cells the targeted tyrosine kinase drives other RTKs and an extensive network of downstream signaling that collapse with drug treatment. Comparison of the signaling networks in EGFR and c-Met-dependent cells identify a “core network” of ≈50 proteins that participate in pathways mediating drug response.


Science Signaling | 2010

Akt-RSK-S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases.

Albrecht Moritz; Yu Li; Ailan Guo; Judit Villén; Yi Wang; Joan MacNeill; Jon M. Kornhauser; Kam Sprott; Jing Zhou; Anthony Possemato; Jian Min Ren; Peter Hornbeck; Lewis C. Cantley; Steven P. Gygi; John Rush; Michael J. Comb

A phosphoproteomic analysis of signaling pathways downstream of oncogenic receptor tyrosine kinases identified potential therapeutic targets. Breaking a Deadly Addiction Most carcinomas are driven by aberrant signaling from receptor tyrosine kinases (RTKs) and, indeed, may become so dependent on these signals that they rely on them for survival. The enormous complexity of the downstream pathways, however, and the sheer numbers of potential targets, have made determining the substrates that mediate this “oncogene addiction” a daunting task. Moritz et al. developed a phosphoproteomic approach to identify targets of three core signaling pathways—all of which involve activation of AGC family kinases—downstream of oncogenic RTKs. They identified more than 300 phosphorylation targets of these signaling pathways, including a set of proteins downstream of three different oncogenic RTKs [c-Met, epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor α (PDGFRα)]. Moreover, they identified six targets of RTK signaling whose knockdown affected cell viability. A detailed analysis of one of these proteins—the chaperone SGTA—revealed a role for it in stabilization of PDGFRα and survival of cancer cells addicted to PDGFRα signaling. Receptor tyrosine kinases (RTKs) activate pathways mediated by serine-threonine kinases, such as the PI3K (phosphatidylinositol 3-kinase)–Akt pathway, the Ras–MAPK (mitogen-activated protein kinase)–RSK (ribosomal S6 kinase) pathway, and the mTOR (mammalian target of rapamycin)–p70 S6 pathway, that control important aspects of cell growth, proliferation, and survival. The Akt, RSK, and p70 S6 family of protein kinases transmits signals by phosphorylating substrates on an RxRxxS/T motif (R, arginine; S, serine; T, threonine; and x, any amino acid). We developed a large-scale proteomic approach to identify more than 300 substrates of this kinase family in cancer cell lines driven by the c-Met, epidermal growth factor receptor (EGFR), or platelet-derived growth factor receptor α (PDGFRα) RTKs. We identified a subset of proteins with RxRxxS/T sites for which phosphorylation was decreased by RTK inhibitors (RTKIs), as well as by inhibitors of the PI3K, mTOR, and MAPK pathways, and we determined the effects of small interfering RNA directed against these substrates on cell viability. Phosphorylation of the protein chaperone SGTA (small glutamine-rich tetratricopeptide repeat–containing protein α) at serine-305 was essential for PDGFRα stabilization and cell survival in PDGFRα-dependent cancer cells. Our approach provides a new view of RTK and Akt–RSK–S6 kinase signaling, revealing previously unidentified Akt–RSK–S6 kinase substrates that merit further consideration as targets for combination therapy with RTKIs.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase T

Xiaodong Zhang; Ailan Guo; Jianshi Yu; Anthony Possemato; Yueting Chen; Weiping Zheng; Roberto D. Polakiewicz; Kenneth W. Kinzler; Bert Vogelstein; Victor E. Velculescu; Zhenghe John Wang

Protein tyrosine phosphatase (PTP) receptor T (PTPRT) is the most frequently mutated PTP in human cancers. However, the cell signaling pathways regulated by PTPRT have not yet been elucidated. Here, we report identification of signal transducer and activator of transcription 3 (STAT3) as a substrate of PTPRT. Phosphorylation of a tyrosine at amino acid Y705 is essential for the function of STAT3, and PTPRT specifically dephosphorylated STAT3 at this position. Accordingly, overexpression of normal PTPRT in colorectal cancer cells reduced the expression of STAT3 target genes. These studies illuminate a mechanism regulating the STAT3 pathway and suggest that this signaling pathway plays an important role in colorectal tumorigenesis.


Clinical Cancer Research | 2013

Disrupting Protein NEDDylation with MLN4924 Is a Novel Strategy to Target Cisplatin Resistance in Ovarian Cancer

Steffan T. Nawrocki; Kevin R. Kelly; Peter G. Smith; Claudia M. Espitia; Anthony Possemato; Sean A. Beausoleil; Michael Milhollen; Stephen J. Blakemore; Michael Thomas; Allison Berger; Jennifer S. Carew

Purpose: Ovarian cancer has the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure and novel therapeutic strategies are urgently needed. MLN4924 is a NEDDylation inhibitor currently under investigation in multiple phase I studies. We investigated its anticancer activity in cisplatin-sensitive and -resistant ovarian cancer models. Experimental Design: Cellular sensitivity to MLN4924/cisplatin was determined by measuring viability, clonogenic survival, and apoptosis. The effects of drug treatment on global protein expression, DNA damage, and reactive oxygen species generation were determined. RNA interference established natural born killer/bcl-2–interacting killer (NBK/BIK) as a regulator of therapeutic sensitivity. The in vivo effects of MLN4924/cisplatin on tumor burden and key pharmacodynamics were assessed in cisplatin-sensitive and -resistant xenograft models. Results: MLN4924 possessed significant activity against both cisplatin-sensitive and -resistant ovarian cancer cells and provoked the stabilization of key NEDD8 substrates and regulators of cellular redox status. Notably, MLN4924 significantly augmented the activity of cisplatin against cisplatin-resistant cells, suggesting that aberrant NEDDylation may contribute to drug resistance. MLN4924 and cisplatin cooperated to induce DNA damage, oxidative stress, and increased expression of the BH3-only protein NBK/BIK. Targeted NBK/BIK knockdown diminished the proapoptotic effects of the MLN4924/cisplatin combination. Administration of MLN4924 to mice bearing ovarian tumor xenografts significantly increased the efficacy of cisplatin against both cisplatin-sensitive and -resistant tumors. Conclusions: Our collective data provide a rationale for the clinical investigation of NEDD8-activating enzyme (NAE) inhibition as a novel strategy to augment cisplatin efficacy in patients with ovarian cancer and other malignancies. Clin Cancer Res; 19(13); 3577–90. ©2013 AACR.


Molecular Cell | 2009

Akt and 14-3-3 control a PACS-2 homeostatic switch that integrates membrane traffic with TRAIL-induced apoptosis

Joseph E. Aslan; Huihong You; Danielle M. Williamson; Jessica Endig; Robert T. Youker; Laurel Thomas; Hongjun Shu; Yuhong Du; Robert L. Milewski; Matthew H. Brush; Anthony Possemato; Kam Sprott; Haian Fu; Kenneth D. Greis; Douglas N. Runckel; Arndt Vogel; Gary Thomas

TRAIL selectively kills diseased cells in vivo, spurring interest in this death ligand as a potential therapeutic. However, many cancer cells are resistant to TRAIL, suggesting the mechanism mediating TRAIL-induced apoptosis is complex. Here we identify PACS-2 as an essential TRAIL effector, required for killing tumor cells in vitro and virally infected hepatocytes in vivo. PACS-2 is phosphorylated at Ser437 in vivo, and pharmacologic and genetic studies demonstrate Akt is an in vivo Ser437 kinase. Akt cooperates with 14-3-3 to regulate the homeostatic and apoptotic properties of PACS-2 that mediate TRAIL action. Phosphorylated Ser437 binds 14-3-3 with high affinity, which represses PACS-2 apoptotic activity and is required for PACS-2 to mediate trafficking of membrane cargo. TRAIL triggers dephosphorylation of Ser437, reprogramming PACS-2 to promote apoptosis. Together, these studies identify the phosphorylation state of PACS-2 Ser437 as a molecular switch that integrates cellular homeostasis with TRAIL-induced apoptosis.


Oncogene | 2013

Identification and functional characterization of p130Cas as a substrate of protein tyrosine phosphatase nonreceptor 14

Peng Zhang; Ailan Guo; Anthony Possemato; Chao Wang; Lydia Beard; Cathleen R. Carlin; Sanford D. Markowitz; Roberto D. Polakiewicz; Zhenghe Wang

Protein tyrosine phosphatase nonreceptor type 14 (PTPN14) is frequently mutated in a variety of human cancers. However, the cell signaling pathways regulated by PTPN14 largely remain to be elucidated. Here, we identify a list of potential substrates of PTPN14 using a phospho-proteomic approach. We show that p130 Crk-associated substrate (p130Cas) is a direct substrate of PTPN14 and that PTPN14 specifically regulates p130Cas phosphorylation at tyrosine residue 128 (Y128) in colorectal cancer (CRC) cells. We engineered CRC cells homozygous for a p130Cas Y128F knock-in mutant and found that these cells exhibit significantly reduced migration and colony formation, impaired anchorage-independent growth, slower xenograft tumor growth in nude mice and have decreased phosphorylation of AKT. Furthermore, we demonstrate that SRC phosphorylates p130Cas Y128 and that CRC cell lines harboring high levels of pY128Cas are more sensitive to SRC family kinase inhibitor Dasatinib. These findings suggest that p130Cas Y128 phosphorylation may be exploited as a predictive marker for Dasatinib response in cancer patients. In aggregate, our studies reveal a novel signaling pathway that has an important role in colorectal tumorigenesis.


Journal of Proteome Research | 2017

Multiplexed Phosphoproteomic Profiling Using Titanium Dioxide and Immunoaffinity Enrichments Reveals Complementary Phosphorylation Events

Anthony Possemato; Joao A. Paulo; Daniel Mulhern; Ailan Guo; Steven P. Gygi; Sean A. Beausoleil

A comprehensive view of protein phosphorylation remains an unmet challenge in the field of cell biology. Mass spectrometry-based proteomics is one of the most promising approaches for identifying thousands of phosphorylation events in a single experiment, yet the full breadth of the phosphoproteome has yet to be elucidated. In this article, we examined the complementarity of two methods for phosphopeptide enrichment based on either titanium dioxide (TiO2) enrichment or phosphorylation motif-specific immunoaffinity precipitation (IAP) with four different antibodies. Each method identified nearly 2000 phosphoproteins. However, distinct populations of phosphopeptides were observed. Despite quantifying over 10 000 unique phosphorylation events using TiO2 and over 3900 with IAP, less than 5% of the sites were in common. Agreeing with published literature, the ratio of pS:pT:pY phosphorylation for the TiO2-enriched data set approximated 90:10:<1. In contrast, that ratio for the combined IAP data sets was 51:29:20. These differences not only suggest the complementarity between multiple enrichment methods but also emphasize their collective importance in obtaining a comprehensive view of the phosphoproteome.


Leukemia | 2016

Comprehensive quantitative proteomic profiling of the pharmacodynamic changes induced by MLN4924 in acute myeloid leukemia cells establishes rationale for its combination with azacitidine

Valeria Visconte; Steffan T. Nawrocki; Claudia M. Espitia; Kevin R. Kelly; Anthony Possemato; Sean A. Beausoleil; Yingchun Han; Hetty E. Carraway; Aziz Nazha; Anjali S. Advani; Jaroslaw P. Maciejewski; Mikkael A. Sekeres; Jennifer S. Carew

Comprehensive quantitative proteomic profiling of the pharmacodynamic changes induced by MLN4924 in acute myeloid leukemia cells establishes rationale for its combination with azacitidine

Collaboration


Dive into the Anthony Possemato's collaboration.

Top Co-Authors

Avatar

Ailan Guo

Cell Signaling Technology

View shared research outputs
Top Co-Authors

Avatar

Klarisa Rikova

Cell Signaling Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albrecht Moritz

Cell Signaling Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ting-Lei Gu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jian Yu

Cell Signaling Technology

View shared research outputs
Top Co-Authors

Avatar

Herbert Haack

Cell Signaling Technology

View shared research outputs
Top Co-Authors

Avatar

John Rush

Cell Signaling Technology

View shared research outputs
Top Co-Authors

Avatar

Laura Sullivan

Cell Signaling Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge