Anthony R. Harris
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anthony R. Harris.
Journal of Medicinal Chemistry | 2011
Kim F. McClure; Etzer Darout; Cristiano R. W. Guimarães; Michael Paul Deninno; Vincent Mascitti; Michael John Munchhof; Ralph P. Robinson; Jeffrey T. Kohrt; Anthony R. Harris; Dianna E. Moore; Bryan Li; Lacey Samp; Bruce Allen Lefker; Kentaro Futatsugi; Daniel Kung; Paul D. Bonin; Peter Cornelius; Ruduan Wang; Eben Salter; Sam Hornby; Amit S. Kalgutkar; Yue Chen
The synthesis and properties of the bridged piperidine (oxaazabicyclo) compounds 8, 9, and 11 are described. A conformational analysis of these structures is compared with the representative GPR119 ligand 1. These results and the differences in agonist pharmacology are used to formulate a conformation-based hypothesis to understand activation of the GPR119 receptor. We also show for these structures that the agonist pharmacology in rat masks the important differences in human pharmacology.
Journal of Medicinal Chemistry | 2016
Jennifer Elizabeth Davoren; Che-Wah Lee; Michelle Renee Garnsey; Michael Aaron Brodney; Jason Cordes; Keith Dlugolenski; Jeremy R. Edgerton; Anthony R. Harris; Christopher John Helal; Stephen Jenkinson; Gregory W. Kauffman; Terrence P. Kenakin; John T. Lazzaro; Susan M. Lotarski; Yuxia Mao; Deane M. Nason; Carrie Northcott; Lisa Nottebaum; Steven V. O’Neil; Betty Pettersen; Michael Popiolek; Veronica Reinhart; Romelia Salomon-Ferrer; Stefanus J. Steyn; Damien Webb; Lei Zhang; Sarah Grimwood
It is hypothesized that selective muscarinic M1 subtype activation could be a strategy to provide cognitive benefits to schizophrenia and Alzheimers disease patients while minimizing the cholinergic side effects observed with nonselective muscarinic orthosteric agonists. Selective activation of M1 with a positive allosteric modulator (PAM) has emerged as a new approach to achieve selective M1 activation. This manuscript describes the development of a series of M1-selective pyridone and pyridine amides and their key pharmacophores. Compound 38 (PF-06767832) is a high quality M1 selective PAM that has well-aligned physicochemical properties, good brain penetration and pharmacokinetic properties. Extensive safety profiling suggested that despite being devoid of mAChR M2/M3 subtype activity, compound 38 still carries gastrointestinal and cardiovascular side effects. These data provide strong evidence that M1 activation contributes to the cholinergic liabilities that were previously attributed to activation of the M2 and M3 receptors.
Bioorganic & Medicinal Chemistry Letters | 2013
Kentaro Futatsugi; Vincent Mascitti; Cristiano R. W. Guimarães; Nao Morishita; Cuiman Cai; Michael Paul Deninno; Hua Gao; Michael Hamilton; Richard F. Hank; Anthony R. Harris; Daniel W. Kung; Sophie Y. Lavergne; Bruce Allen Lefker; Michael G. Lopaze; Kim F. McClure; Michael John Munchhof; Cathy Préville; Ralph P. Robinson; Stephen W. Wright; Paul D. Bonin; Peter Cornelius; Yue Chen; Amit S. Kalgutkar
A novel GPR119 agonist based on the 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole scaffold was designed through lead optimization starting from pyrazole-based GPR119 agonist 1. The design is centered on the conformational restriction of the core scaffold, while minimizing the change in spatial relationships of two key pharmacophoric elements (piperidine-carbamate and aryl sulfone).
Journal of Medicinal Chemistry | 2017
Jennifer Elizabeth Davoren; Michelle Renee Garnsey; Betty Pettersen; Michael Aaron Brodney; Jeremy R. Edgerton; Jean-Philippe Fortin; Sarah Grimwood; Anthony R. Harris; Stephen Jenkinson; Terry P. Kenakin; John T. Lazzaro; Che-Wah Lee; Susan M. Lotarski; Lisa Nottebaum; Steven V. O’Neil; Michael Popiolek; Simeon Ramsey; Stefanus J. Steyn; Catherine A. Thorn; Lei Zhang; Damien Webb
Recent data demonstrated that activation of the muscarinic M1 receptor by a subtype-selective positive allosteric modulator (PAM) contributes to the gastrointestinal (GI) and cardiovascular (CV) cholinergic adverse events (AEs) previously attributed to M2 and M3 activation. These studies were conducted using PAMs that also exhibited allosteric agonist activity, leaving open the possibility that direct activation by allosteric agonism, rather than allosteric modulation, could be responsible for the adverse effects. This article describes the design and synthesis of lactam-derived M1 PAMs that address this hypothesis. The lead molecule from this series, compound 1 (PF-06827443), is a potent, low-clearance, orally bioavailable, and CNS-penetrant M1-selective PAM with minimal agonist activity. Compound 1 was tested in dose escalation studies in rats and dogs and was found to induce cholinergic AEs and convulsion at therapeutic indices similar to previous compounds with more agonist activity. These findings provide preliminary evidence that positive allosteric modulation of M1 is sufficient to elicit cholinergic AEs.
Bioorganic & Medicinal Chemistry Letters | 2016
Jennifer Elizabeth Davoren; Steven V. O’Neil; Dennis P. Anderson; Michael Aaron Brodney; Lois K. Chenard; Keith Dlugolenski; Jeremy R. Edgerton; Michael Green; Michelle Renee Garnsey; Sarah Grimwood; Anthony R. Harris; Gregory W. Kauffman; Erik LaChapelle; John T. Lazzaro; Che-Wah Lee; Susan M. Lotarski; Deane M. Nason; R. Scott Obach; Veronica Reinhart; Romelia Salomon-Ferrer; Stefanus J. Steyn; Damien Webb; Jiangli Yan; Lei Zhang
Selective activation of the M1 receptor via a positive allosteric modulator (PAM) is a new approach for the treatment of the cognitive impairments associated with schizophrenia and Alzheimers disease. A novel series of azaindole amides and their key pharmacophore elements are described. The nitrogen of the azaindole core is a key design element as it forms an intramolecular hydrogen bond with the amide N-H thus reinforcing the bioactive conformation predicted by published SAR and our homology model. Representative compound 25 is a potent and selective M1 PAM that has well aligned physicochemical properties, adequate brain penetration and pharmacokinetic (PK) properties, and is active in vivo. These favorable properties indicate that this series possesses suitable qualities for further development and studies.
Synlett | 2010
Jennifer Elizabeth Davoren; David L. Gray; Anthony R. Harris; Deane M. Nason; Wenjian Xu
Tetrahedron | 2011
Anthony R. Harris; Deane M. Nason; Elizabeth M. Collantes; Wenjian Xu; Yushi Chi; Zhihan Wang; Bingzhi Zhang; Qingjian Zhang; David L. Gray; Jennifer Elizabeth Davoren
Journal of Medicinal Chemistry | 2018
Laura A. McAllister; Christopher Ryan Butler; Scot Mente; Steven V. O’Neil; Kari R. Fonseca; Justin R. Piro; Julie Cianfrogna; Timothy L. Foley; Adam M. Gilbert; Anthony R. Harris; Christopher John Helal; Douglas S. Johnson; Justin Ian Montgomery; Deane M. Nason; Stephen Noell; Jayvardhan Pandit; Bruce N. Rogers; Tarek A. Samad; Christopher L. Shaffer; Rafael G. Silva; Daniel P. Uccello; Damien Webb; Michael Aaron Brodney
Archive | 2017
Amy B. Dounay; Anthony R. Harris; Chakrapani Subramanyam; Christopher John Helal; David L. Gray; Deane M. Nason; Edward Guilmette; Ivan Viktorovich Efremov; Jaclyn Louise Henderson; Jennifer Elizabeth Davoren; John A. Allen; Jotham Wadsworth Coe; Scot Mente; Steven Victor O'neil; Wenjian Xu
Synthesis | 2011
Zhihan Wang; Yushi Chi; Anthony R. Harris; David L. Gray; Jennifer Elizabeth Davoren