Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony Steven Dick is active.

Publication


Featured researches published by Anthony Steven Dick.


Human Brain Mapping | 2009

Co‐speech gestures influence neural activity in brain regions associated with processing semantic information

Anthony Steven Dick; Susan Goldin-Meadow; Uri Hasson; Jeremy I. Skipper; Steven L. Small

Everyday communication is accompanied by visual information from several sources, including co‐speech gestures, which provide semantic information listeners use to help disambiguate the speakers message. Using fMRI, we examined how gestures influence neural activity in brain regions associated with processing semantic information. The BOLD response was recorded while participants listened to stories under three audiovisual conditions and one auditory‐only (speech alone) condition. In the first audiovisual condition, the storyteller produced gestures that naturally accompany speech. In the second, the storyteller made semantically unrelated hand movements. In the third, the storyteller kept her hands still. In addition to inferior parietal and posterior superior and middle temporal regions, bilateral posterior superior temporal sulcus and left anterior inferior frontal gyrus responded more strongly to speech when it was further accompanied by gesture, regardless of the semantic relation to speech. However, the right inferior frontal gyrus was sensitive to the semantic import of the hand movements, demonstrating more activity when hand movements were semantically unrelated to the accompanying speech. These findings show that perceiving hand movements during speech modulates the distributed pattern of neural activation involved in both biological motion perception and discourse comprehension, suggesting listeners attempt to find meaning, not only in the words speakers produce, but also in the hand movements that accompany speech. Hum Brain Mapp, 2009.


The Neuroscientist | 2014

The Language Connectome: New Pathways, New Concepts

Anthony Steven Dick; Byron Bernal; Pascale Tremblay

The field of the neurobiology of language is experiencing a paradigm shift in which the predominant Broca–Wernicke–Geschwind language model is being revised in favor of models that acknowledge that language is processed within a distributed cortical and subcortical system. While it is important to identify the brain regions that are part of this system, it is equally important to establish the anatomical connectivity supporting their functional interactions. The most promising framework moving forward is one in which language is processed via two interacting “streams”—a dorsal and ventral stream—anchored by long association fiber pathways, namely the superior longitudinal fasciculus/arcuate fasciculus, uncinate fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and two less well-established pathways, the middle longitudinal fasciculus and extreme capsule. In this article, we review the most up-to-date literature on the anatomical connectivity and function of these pathways. We also review and emphasize the importance of the often overlooked cortico-subcortical connectivity for speech via the “motor stream” and associated fiber systems, including a recently identified cortical association tract, the frontal aslant tract. These pathways anchor the distributed cortical and subcortical systems that implement speech and language in the human brain.


Brain and Language | 2010

Neural development of networks for audiovisual speech comprehension

Anthony Steven Dick; Ana Solodkin; Steven L. Small

Everyday conversation is both an auditory and a visual phenomenon. While visual speech information enhances comprehension for the listener, evidence suggests that the ability to benefit from this information improves with development. A number of brain regions have been implicated in audiovisual speech comprehension, but the extent to which the neurobiological substrate in the child compares to the adult is unknown. In particular, developmental differences in the network for audiovisual speech comprehension could manifest through the incorporation of additional brain regions, or through different patterns of effective connectivity. In the present study we used functional magnetic resonance imaging and structural equation modeling (SEM) to characterize the developmental changes in network interactions for audiovisual speech comprehension. The brain response was recorded while children 8- to 11-years-old and adults passively listened to stories under audiovisual (AV) and auditory-only (A) conditions. Results showed that in children and adults, AV comprehension activated the same fronto-temporo-parietal network of regions known for their contribution to speech production and perception. However, the SEM network analysis revealed age-related differences in the functional interactions among these regions. In particular, the influence of the posterior inferior frontal gyrus/ventral premotor cortex on supramarginal gyrus differed across age groups during AV, but not A speech. This functional pathway might be important for relating motor and sensory information used by the listener to identify speech sounds. Further, its development might reflect changes in the mechanisms that relate visual speech information to articulatory speech representations through experience producing and perceiving speech.


Brain | 2010

Left hemisphere regions are critical for language in the face of early left focal brain injury

Anjali Raja Beharelle; Anthony Steven Dick; Goulven Josse; Ana Solodkin; Peter R. Huttenlocher; Susan C. Levine; Steven L. Small

A predominant theory regarding early stroke and its effect on language development, is that early left hemisphere lesions trigger compensatory processes that allow the right hemisphere to assume dominant language functions, and this is thought to underlie the near normal language development observed after early stroke. To test this theory, we used functional magnetic resonance imaging to examine brain activity during category fluency in participants who had sustained pre- or perinatal left hemisphere stroke (n = 25) and in neurologically normal siblings (n = 27). In typically developing children, performance of a category fluency task elicits strong involvement of left frontal and lateral temporal regions and a lesser involvement of right hemisphere structures. In our cohort of atypically developing participants with early stroke, expressive and receptive language skills correlated with activity in the same left inferior frontal regions that support language processing in neurologically normal children. This was true independent of either the amount of brain injury or the extent that the injury was located in classical cortical language processing areas. Participants with bilateral activation in left and right superior temporal-inferior parietal regions had better language function than those with either predominantly left- or right-sided unilateral activation. The advantage conferred by left inferior frontal and bilateral temporal involvement demonstrated in our study supports a strong predisposition for typical neural language organization, despite an intervening injury, and argues against models suggesting that the right hemisphere fully accommodates language function following early injury.


Developmental Science | 2012

Gesture in the developing brain

Anthony Steven Dick; Susan Goldin-Meadow; Ana Solodkin; Steven L. Small

Speakers convey meaning not only through words, but also through gestures. Although children are exposed to co-speech gestures from birth, we do not know how the developing brain comes to connect meaning conveyed in gesture with speech. We used functional magnetic resonance imaging (fMRI) to address this question and scanned 8- to 11-year-old children and adults listening to stories accompanied by hand movements, either meaningful co-speech gestures or meaningless self-adaptors. When listening to stories accompanied by both types of hand movement, both children and adults recruited inferior frontal, inferior parietal, and posterior temporal brain regions known to be involved in processing language not accompanied by hand movements. There were, however, age-related differences in activity in posterior superior temporal sulcus (STSp), inferior frontal gyrus, pars triangularis (IFGTr), and posterior middle temporal gyrus (MTGp) regions previously implicated in processing gesture. Both children and adults showed sensitivity to the meaning of hand movements in IFGTr and MTGp, but in different ways. Finally, we found that hand movement meaning modulates interactions between STSp and other posterior temporal and inferior parietal regions for adults, but not for children. These results shed light on the developing neural substrate for understanding meaning contributed by co-speech gesture.


Frontiers in Psychology | 2012

A Network Model of Observation and Imitation of Speech

Nira Mashal; Ana Solodkin; Anthony Steven Dick; E. Elinor Chen; Steven L. Small

Much evidence has now accumulated demonstrating and quantifying the extent of shared regional brain activation for observation and execution of speech. However, the nature of the actual networks that implement these functions, i.e., both the brain regions and the connections among them, and the similarities and differences across these networks has not been elucidated. The current study aims to characterize formally a network for observation and imitation of syllables in the healthy adult brain and to compare their structure and effective connectivity. Eleven healthy participants observed or imitated audiovisual syllables spoken by a human actor. We constructed four structural equation models to characterize the networks for observation and imitation in each of the two hemispheres. Our results show that the network models for observation and imitation comprise the same essential structure but differ in important ways from each other (in both hemispheres) based on connectivity. In particular, our results show that the connections from posterior superior temporal gyrus and sulcus to ventral premotor, ventral premotor to dorsal premotor, and dorsal premotor to primary motor cortex in the left hemisphere are stronger during imitation than during observation. The first two connections are implicated in a putative dorsal stream of speech perception, thought to involve translating auditory speech signals into motor representations. Thus, the current results suggest that flow of information during imitation, starting at the posterior superior temporal cortex and ending in the motor cortex, enhances input to the motor cortex in the service of speech execution.


NeuroImage | 2015

Meta-analytic connectivity and behavioral parcellation of the human cerebellum.

Michael C. Riedel; Kimberly L. Ray; Anthony Steven Dick; Matthew T. Sutherland; Zachary Hernandez; P. Mickle Fox; Simon B. Eickhoff; Peter T. Fox; Angela R. Laird

The cerebellum historically has been thought to mediate motor and sensory signals between the body and cerebral cortex, yet cerebellar lesions are also associated with altered cognitive behavioral performance. Neuroimaging evidence indicates that the cerebellum contributes to a wide range of cognitive, perceptual, and motor functions. Here, we used the BrainMap database to investigate whole-brainco-activation patterns between cerebellar structures and regions of the cerebral cortex, as well as associations with behavioral tasks. Hierarchical clustering was performed to meta-analytically identify cerebellar structures with similar cortical co-activation, and independently, with similar correlations to specific behavioral tasks. Strong correspondences were observed in these separate but parallel analyses of meta-analytic connectivity and behavioral metadata. We recovered differential zones of cerebellar co-activation that are reflected across the literature. Furthermore, the behaviors and tasks associated with the different cerebellar zones provide insight into the specialized function of the cerebellum, relating to high-order cognition, emotion, perception, interoception, and action. Taken together, these task-basedmeta-analytic results implicate distinct zones of the cerebellum as critically involved in the monitoring and mediation of psychological responses to internal and external stimuli.


Neurobiology of Aging | 2013

Functional and structural aging of the speech sensorimotor neural system: functional magnetic resonance imaging evidence

Pascale Tremblay; Anthony Steven Dick; Steven L. Small

The ability to perceive and produce speech undergoes important changes in late adulthood. The goal of the present study was to characterize functional and structural age-related differences in the cortical network that support speech perception and production, using magnetic resonance imaging, as well as the relationship between functional and structural age-related changes occurring in this network. We asked young and older adults to observe videos of a speaker producing single words (perception), and to observe and repeat the words produced (production). Results show a widespread bilateral network of brain activation for Perception and Production that was not correlated with age. In addition, several regions did show age-related change (auditory cortex, planum temporale, superior temporal sulcus, premotor cortices, SMA-proper). Examination of the relationship between brain signal and regional and global gray matter volume and cortical thickness revealed a complex set of relationships between structure and function, with some regions showing a relationship between structure and function and some not. The present results provide novel findings about the neurobiology of aging and verbal communication.


Brain and Language | 2015

Fiber tracking of the frontal aslant tract and subcomponents of the arcuate fasciculus in 5-8-year-olds: Relation to speech and language function.

Iris Broce; Byron Bernal; Nolan Altman; Pascale Tremblay; Anthony Steven Dick

Long association cortical fiber pathways support developing networks for speech and language, but we do not have a clear understanding of how they develop in early childhood. Using diffusion-weighted imaging (DWI) we tracked the frontal aslant tract (FAT), arcuate fasciculus (AF), and AF segments (anterior, long, posterior) in 19 typical 5-8-year-olds, an age range in which significant improvement in speech and language function occurs. While the microstructural properties of the FAT and the right AF did not show age-related differences over the age range we investigated, the left AF evidenced increasing fractional anisotropy with age. Microstructural properties of the AF in both hemispheres, however, predicted receptive and expressive language. Length of the left FAT also predicted receptive language, which provides initial suggestion that this pathway is important for language development. These findings have implications for models of language development and for models of the neurobiology of language more broadly.


The Journal of Neuroscience | 2013

Interhemispheric Functional Connectivity following Prenatal or Perinatal Brain Injury Predicts Receptive Language Outcome

Anthony Steven Dick; Anjali Raja Beharelle; Ana Solodkin; Steven L. Small

Early brain injury alters both structural and functional connectivity between the cerebral hemispheres. Despite increasing knowledge on the individual hemispheric contributions to recovery from such injury, we know very little about how their interactions affect this process. In the present study, we related interhemispheric structural and functional connectivity to receptive language outcome following early left hemisphere stroke. We used functional magnetic resonance imaging to study 14 people with neonatal brain injury, and 25 age-matched controls during passive story comprehension. With respect to structural connectivity, we found that increased volume of the corpus callosum predicted good receptive language outcome, but that this is not specific to people with injury. In contrast, we found that increased posterior superior temporal gyrus interhemispheric functional connectivity during story comprehension predicted better receptive language performance in people with early brain injury, but worse performance in typical controls. This suggests that interhemispheric functional connectivity is one potential compensatory mechanism following early injury. Further, this pattern of results suggests refinement of the prevailing notion that better language outcome following early left hemisphere injury relies on the contribution of the contralesional hemisphere (i.e., the “right-hemisphere-take-over” theory). This pattern of results was also regionally specific; connectivity of the angular gyrus predicted poorer performance in both groups, independent of brain injury. These results present a complex picture of recovery, and in some cases, such recovery relies on increased cooperation between the injured hemisphere and homologous regions in the contralesional hemisphere, but in other cases, the opposite appears to hold.

Collaboration


Dive into the Anthony Steven Dick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Solodkin

University of California

View shared research outputs
Top Co-Authors

Avatar

Iris Broce

University of California

View shared research outputs
Top Co-Authors

Avatar

Paulo A. Graziano

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byron Bernal

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge