Anthony W. Ryan
Trinity College, Dublin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anthony W. Ryan.
Nature Genetics | 2010
Amy Strange; Francesca Capon; Chris C. A. Spencer; Jo Knight; Michael E. Weale; Michael H. Allen; Anne Barton; Céline Bellenguez; Judith G.M. Bergboer; Jenefer M. Blackwell; Elvira Bramon; Suzannah Bumpstead; Juan P. Casas; Michael J. Cork; Aiden Corvin; Panos Deloukas; Alexander Dilthey; Audrey Duncanson; Sarah Edkins; Xavier Estivill; Oliver FitzGerald; Colin Freeman; Emiliano Giardina; Emma Gray; Angelika Hofer; Ulrike Hüffmeier; Sarah Hunt; Alan D. Irvine; Janusz Jankowski; Brian J. Kirby
To identify new susceptibility loci for psoriasis, we undertook a genome-wide association study of 594,224 SNPs in 2,622 individuals with psoriasis and 5,667 controls. We identified associations at eight previously unreported genomic loci. Seven loci harbored genes with recognized immune functions (IL28RA, REL, IFIH1, ERAP1, TRAF3IP2, NFKBIA and TYK2). These associations were replicated in 9,079 European samples (six loci with a combined P < 5 × 10−8 and two loci with a combined P < 5 × 10−7). We also report compelling evidence for an interaction between the HLA-C and ERAP1 loci (combined P = 6.95 × 10−6). ERAP1 plays an important role in MHC class I peptide processing. ERAP1 variants only influenced psoriasis susceptibility in individuals carrying the HLA-C risk allele. Our findings implicate pathways that integrate epidermal barrier dysfunction with innate and adaptive immune dysregulation in psoriasis pathogenesis.
Nature Genetics | 2008
Karen A. Hunt; Alexandra Zhernakova; Graham Turner; Graham A. Heap; Lude Franke; Marcel Bruinenberg; Jihane Romanos; Lotte C. Dinesen; Anthony W. Ryan; Davinder Panesar; Rhian Gwilliam; Fumihiko Takeuchi; William M. McLaren; Geoffrey Holmes; Peter D. Howdle; Julian R. Walters; David S. Sanders; Raymond J. Playford; Gosia Trynka; Chris Jj Mulder; M. Luisa Mearin; Wieke H. Verbeek; Valerie Trimble; Fiona M. Stevens; Colm O'Morain; N. P. Kennedy; Dermot Kelleher; Daniel J. Pennington; David P. Strachan; Wendy L. McArdle
Our genome-wide association study of celiac disease previously identified risk variants in the IL2–IL21 region. To identify additional risk variants, we genotyped 1,020 of the most strongly associated non-HLA markers in an additional 1,643 cases and 3,406 controls. Through joint analysis including the genome-wide association study data (767 cases, 1,422 controls), we identified seven previously unknown risk regions (P < 5 × 10−7). Six regions harbor genes controlling immune responses, including CCR3, IL12A, IL18RAP, RGS1, SH2B3 (nsSNP rs3184504) and TAGAP. Whole-blood IL18RAP mRNA expression correlated with IL18RAP genotype. Type 1 diabetes and celiac disease share HLA-DQ, IL2–IL21, CCR3 and SH2B3 risk regions. Thus, this extensive genome-wide association follow-up study has identified additional celiac disease risk variants in relevant biological pathways.
Nature Genetics | 2010
Ulrike Hüffmeier; Steffen Uebe; Arif B. Ekici; John Bowes; Emiliano Giardina; Eleanor Korendowych; Kristina Juneblad; Maria Apel; Ross McManus; Pauline Ho; Ian N. Bruce; Anthony W. Ryan; Frank Behrens; Jesús Lascorz; Beate Böhm; Heiko Traupe; Jörg Lohmann; Christian Gieger; Heinz-Erich Wichmann; Christine Herold; Michael Steffens; Lars Klareskog; Thomas F. Wienker; Oliver FitzGerald; Gerd-Marie Alenius; Neil McHugh; Giuseppe Novelli; Harald Burkhardt; Anne Barton; André Reis
Psoriatic arthritis (PsA) is an inflammatory joint disease that is distinct from other chronic arthritides and which is frequently accompanied by psoriasis vulgaris (PsV) and seronegativity for rheumatoid factor. We conducted a genome-wide association study in 609 German individuals with PsA (cases) and 990 controls with replication in 6 European cohorts including a total of 5,488 individuals. We replicated PsA associations at HLA-C and IL12B and identified a new association at TRAF3IP2 (rs13190932, P = 8.56 × 10−17). TRAF3IP2 was also associated with PsV in a German cohort including 2,040 individuals (rs13190932, P = 1.95 × 10−3). Sequencing of the exons of TRAF3IP2 identified a coding variant (p.Asp10Asn, rs33980500) as the most significantly associated SNP (P = 1.13 × 10−20, odds ratio = 1.95). Functional assays showed reduced binding of this TRAF3IP2 variant to TRAF6, suggesting altered modulation of immunoregulatory signals through altered TRAF interactions as a new and shared pathway for PsA and PsV.
PLOS Genetics | 2011
Alexandra Zhernakova; Eli A. Stahl; Gosia Trynka; Soumya Raychaudhuri; Eleanora A. Festen; Lude Franke; Harm-Jan Westra; Rudolf S. N. Fehrmann; Fina Kurreeman; Brian Thomson; Namrata Gupta; Jihane Romanos; Ross McManus; Anthony W. Ryan; Graham Turner; E. Brouwer; Marcel D. Posthumus; Elaine F. Remmers; Francesca Tucci; René E. M. Toes; Elvira Grandone; Maria Cristina Mazzilli; Anna Rybak; Bozena Cukrowska; Marieke J. H. Coenen; Timothy R. D. J. Radstake; Piet L. C. M. van Riel; Yonghong Li; Paul I. W. de Bakker; Peter K. Gregersen
Epidemiology and candidate gene studies indicate a shared genetic basis for celiac disease (CD) and rheumatoid arthritis (RA), but the extent of this sharing has not been systematically explored. Previous studies demonstrate that 6 of the established non-HLA CD and RA risk loci (out of 26 loci for each disease) are shared between both diseases. We hypothesized that there are additional shared risk alleles and that combining genome-wide association study (GWAS) data from each disease would increase power to identify these shared risk alleles. We performed a meta-analysis of two published GWAS on CD (4,533 cases and 10,750 controls) and RA (5,539 cases and 17,231 controls). After genotyping the top associated SNPs in 2,169 CD cases and 2,255 controls, and 2,845 RA cases and 4,944 controls, 8 additional SNPs demonstrated P<5×10−8 in a combined analysis of all 50,266 samples, including four SNPs that have not been previously confirmed in either disease: rs10892279 near the DDX6 gene (Pcombined = 1.2×10−12), rs864537 near CD247 (Pcombined = 2.2×10−11), rs2298428 near UBE2L3 (Pcombined = 2.5×10−10), and rs11203203 near UBASH3A (Pcombined = 1.1×10−8). We also confirmed that 4 gene loci previously established in either CD or RA are associated with the other autoimmune disease at combined P<5×10−8 (SH2B3, 8q24, STAT4, and TRAF1-C5). From the 14 shared gene loci, 7 SNPs showed a genome-wide significant effect on expression of one or more transcripts in the linkage disequilibrium (LD) block around the SNP. These associations implicate antigen presentation and T-cell activation as a shared mechanism of disease pathogenesis and underscore the utility of cross-disease meta-analysis for identification of genetic risk factors with pleiotropic effects between two clinically distinct diseases.
Gut | 2009
Gosia Trynka; Alexandra Zhernakova; Jihane Romanos; Lude Franke; Karen A. Hunt; Graham Turner; Marcel Bruinenberg; Graham A. Heap; M Platteel; Anthony W. Ryan; C. de Kovel; Geoffrey Holmes; Peter D. Howdle; Julian R. Walters; David S. Sanders; Chris Jj Mulder; M L Mearin; Wieke H. Verbeek; Valerie Trimble; Fiona M. Stevens; Dermot Kelleher; Donatella Barisani; Maria Teresa Bardella; Ross McManus; D A van Heel; Cisca Wijmenga
Objective: Our previous coeliac disease genome-wide association study (GWAS) implicated risk variants in the human leucocyte antigen (HLA) region and eight novel risk regions. To identify more coeliac disease loci, we selected 458 single nucleotide polymorphisms (SNPs) that showed more modest association in the GWAS for genotyping and analysis in four independent cohorts. Design: 458 SNPs were assayed in 1682 cases and 3258 controls from three populations (UK, Irish and Dutch). We combined the results with the original GWAS cohort (767 UK cases and 1422 controls); six SNPs showed association with p<1×10−04 and were then genotyped in an independent Italian coeliac cohort (538 cases and 593 controls). Results: We identified two novel coeliac disease risk regions: 6q23.3 (OLIG3-TNFAIP3) and 2p16.1 (REL), both of which reached genome-wide significance in the combined analysis of all 2987 cases and 5273 controls (rs2327832 p = 1.3×10−08, and rs842647 p = 5.2×10−07). We investigated the expression of these genes in the RNA isolated from biopsies and from whole blood RNA. We did not observe any changes in gene expression, nor in the correlation of genotype with gene expression. Conclusions: Both TNFAIP3 (A20, at the protein level) and REL are key mediators in the nuclear factor kappa B (NF-κB) inflammatory signalling pathway. For the first time, a role for primary heritable variation in this important biological pathway predisposing to coeliac disease has been identified. Currently, the HLA risk factors and the 10 established non-HLA risk factors explain ∼40% of the heritability of coeliac disease.
PLOS Pathogens | 2011
Anthony W. Ryan; Mark Lynch; Sinead Smith; Sylvie Amu; Hendrik J. Nel; Claire E. McCoy; Jennifer K. Dowling; Eve Draper; Vincent O'Reilly; Ciara McCarthy; Julie B. O'Brien; Deirdre Ni Eidhin; Mary J. O'Connell; Brian Keogh; Charles Oliver Morton; Thomas R. Rogers; Padraic G. Fallon; Luke A. J. O'Neill; Dermot Kelleher; Christine E. Loscher
Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H/HeN and C3H/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H/HeJ mice and failed to induce a subsequent Th cell response. TLR4−/− and Myd88−/−, but not TRIF−/− mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system.
Journal of Investigative Dermatology | 2011
Eva Riveira-Munoz; Su Min He; Geòrgia Escaramís; Philip E. Stuart; Ulrike Hüffmeier; Catherine Lee; Brian Kirby; Akira Oka; Emiliano Giardina; Wilson Liao; Judith G.M. Bergboer; Kati Kainu; Rafael de Cid; Batmunkh Munkhbat; Patrick L.J.M. Zeeuwen; John A.L. Armour; Annie Poon; Tomotaka Mabuchi; Akira Ozawa; Agnieszka Zawirska; A. David Burden; Jonathan Barker; Francesca Capon; Heiko Traupe; Liang Dan Sun; Yong Cui; Xian Yong Yin; Gang Chen; Henry W. Lim; Rajan P. Nair
A multicenter meta-analysis including data from 9,389 psoriasis patients and 9,477 control subjects was performed to investigate the contribution of the deletion of genes LCE3C and LCE3B, involved in skin barrier defense, to psoriasis susceptibility in different populations. The study confirms that the deletion of LCE3C and LCE3B is a common genetic factor for susceptibility to psoriasis in the European populations (OR(Overall) = 1.21 (1.15-1.27)), and for the first time directly demonstrates the deletions association with psoriasis in the Chinese (OR = 1.27 (1.16-1.34)) and Mongolian (OR = 2.08 (1.44-2.99)) populations. The analysis of the HLA-Cw6 locus showed significant differences in the epistatic interaction with the LCE3C and LCE3B deletion in at least some European populations, indicating epistatic effects between these two major genetic contributors to psoriasis. The study highlights the value of examining genetic risk factors in multiple populations to identify genetic interactions, and indicates the need of further studies to understand the interaction of the skin barrier and the immune system in susceptibility to psoriasis.
Annals of the Rheumatic Diseases | 2011
John Bowes; Gisela Orozco; Edward Flynn; Pauline Ho; Rasha Brier; Helena Marzo-Ortega; Laura C. Coates; Ross McManus; Anthony W. Ryan; David Kane; Eleanor Korendowych; Neil McHugh; Oliver FitzGerald; Jonathan Packham; Ann W. Morgan; Ian N. Bruce; Anne Barton
Objectives To investigate a shared genetic aetiology for skin involvement in psoriasis and psoriatic arthritis (PsA) by genotyping single-nucleotide polymorphisms (SNPs), reported to be associated in genome-wide association studies of psoriasis, in patients with PsA. Methods SNPs with reported evidence for association with psoriasis were genotyped in a PsA case and control collection from the UK and Ireland. Genotype and allele frequencies were compared between PsA cases and controls using the Armitage test for trend. Results Seven SNPs mapping to the IL1RN, TNIP1, TNFAIP3, TSC1, IL23A, SMARCA4 and RNF114 genes were successfully genotyped. The IL23A and TNIP1 genes showed convincing evidence for association (rs2066808, p = 9.1×10−7; rs17728338, p = 3.5×10−5, respectively) whilst SNPs mapping to the TNFAIP3, TSC1 and RNF114 genes showed nominal evidence for association (rs610604, p = 0.03; rs1076160, p = 0.03; rs495337, p = 0.0025). No evidence for association with IL1RN or SMARCA4 was found but the power to detect association was low. Conclusions SNPs mapping to previously reported psoriasis loci show evidence for association to PSA, thus supporting the hypothesis that the genetic aetiology of skin involvement is the same in both PsA and psoriasis.
Nature Communications | 2015
John Bowes; Ashley Budu-Aggrey; Ulrike Hüffmeier; Steffen Uebe; Kathryn Steel; Harry L. Hebert; Chris Wallace; Jonathan Massey; Ian N. Bruce; James Bluett; Marie Feletar; Ann W. Morgan; Helena Marzo-Ortega; Gary Donohoe; Derek W. Morris; Philip S. Helliwell; Anthony W. Ryan; David Kane; Richard B. Warren; Eleanor Korendowych; Gerd-Marie Alenius; Emiliano Giardina; Jonathan Packham; Ross McManus; Oliver FitzGerald; Neil McHugh; Matthew A. Brown; Pauline Ho; Frank Behrens; Harald Burkhardt
Psoriatic arthritis (PsA) is a chronic inflammatory arthritis associated with psoriasis and, despite the larger estimated heritability for PsA, the majority of genetic susceptibility loci identified to date are shared with psoriasis. Here, we present results from a case–control association study on 1,962 PsA patients and 8,923 controls using the Immunochip genotyping array. We identify eight loci passing genome-wide significance, secondary independent effects at three loci and a distinct PsA-specific variant at the IL23R locus. We report two novel loci and evidence of a novel PsA-specific association at chromosome 5q31. Imputation of classical HLA alleles, amino acids and SNPs across the MHC region highlights three independent associations to class I genes. Finally, we find an enrichment of associated variants to markers of open chromatin in CD8+ memory primary T cells. This study identifies key insights into the genetics of PsA that could begin to explain fundamental differences between psoriasis and PsA.
Annals of the Rheumatic Diseases | 2011
John Bowes; Steve Eyre; Edward Flynn; Pauline Ho; Salma Salah; Richard B. Warren; Helena Marzo-Ortega; Laura C. Coates; Ross McManus; Anthony W. Ryan; David Kane; Eleanor Korendowych; Neil McHugh; Oliver FitzGerald; Jonathan Packham; Ann W. Morgan; C.E.M. Griffiths; Ian N. Bruce; Jane Worthington; Anne Barton
Objective There is great interest in the identification of genetic factors that differentiate psoriatic arthritis (PsA) from psoriasis vulgaris (PsV), as such discoveries could lead to the identification of distinct underlying aetiological pathways. Recent studies identified single nucleotide polymorphisms (SNPs) in the interleukin 13 (IL-13) gene region as risk factors for PsV. Further investigations in one of these studies found the effect to be primarily restricted to PsA, thus suggesting the discovery of a specific genetic risk factor for PsA. Given this intriguing evidence, association to this gene was investigated in large collections of PsA and PsV patients and healthy controls. Methods Two SNPs (rs20541 and rs1800925) mapping to the IL-13 gene were genotyped in 1057 PsA and 778 type I PsV patients using the Sequenom genotyping platform. Genotype frequencies were compared to those of 5575 healthy controls. Additional analyses were performed in phenotypic subgroups of PsA (type I or II PsV and in those seronegative for rheumatoid factor). Results Both SNPs were found to be highly associated with susceptibility to PsA (rs1800925 ptrend = 6.1×10−5 OR 1.33, rs20541 ptrend = 8.0×10−4 OR 1.27), but neither SNP was significantly associated with susceptibility to PsV. Conclusions This study confirms that the effect of IL-13 risk locus is specific for PsA, thus highlighting a key biological pathway that differentiates PsA from PsV. The identification of markers that differentiate the two diseases raises the possibility in future of allowing screening of PsV patients to identify those at risk of developing PsA.