Antje Biesemeier
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antje Biesemeier.
Neurobiology of Aging | 2014
Antje Biesemeier; Tatjana Taubitz; Sylvie Julien; Efdal Yoeruek; Ulrich Schraermeyer
This work presents a combined light and electron microscopical approach to investigate the initial breakdown of the retinal pigment epithelium (RPE) and choriocapillaris (CC) in age-related macular degeneration (AMD). Perimacular sections of 12 dry and wet AMD eyes (82 ± 15 years) and 7 age-matched controls (75 ± 10 years) without retinal pathology were investigated. Disease progression was classified into 5 stages of retinal degeneration to investigate the concurrent CC breakdown. Special emphasis was laid on transitions where intact CC-RPE-retina complexes went over into highly atrophied areas. AMD sections showed elevated loss of photoreceptors, RPE and CC (p < 0.01), and thickened Bruchs membrane with increased basal laminar and linear deposits compared with controls. Up to 27% of the CC was lost in controls although RPE and retina were still intact. This primary loss of CC further increased with AMD (up to 100%). The data implicate that CC breakdown already occurs during normal aging and precedes degeneration of the RPE and retina with AMD, defining AMD as a vascular disease. Particular attention should be given to the investigation of early AMD stages and transitional stages to the late stage that reveal a possible sequence of degenerative steps with aging and AMD.
British Journal of Ophthalmology | 2014
Sylvie Julien; Antje Biesemeier; Tatjana Taubitz; Ulrich Schraermeyer
Background Since there is evidence that the Fc domain of antivascular endothelial growth factor drugs may cause unexpected consequences in retinal and choroidal vessels, the effects of intravitreal ranibizumab and aflibercept on monkey eyes were investigated. Methods Four cynomolgus monkeys were intravitreally injected with 0.5 mg of ranibizumab and another four with 2 mg of aflibercept. Two untreated monkeys served as controls. Funduscopy, fluorescein angiography (FA), spectral-domain-optical coherence tomography (SD-OCT) and measurement of intraocular pressure (IOP) were performed. The eyes were inspected by light, fluorescence and electron microscopy. The diameter of the choriocapillaris (CC) was measured by morphometry, and the areas of the CC with free haemoglobin, CC fenestrations and endothelial thickness were quantified. Results Analysis showed ranibizumab permeated the retina via intercellular clefts, whereas aflibercept was taken up by ganglion cells, cells of the inner and outer retinal layers and the retinal pigment epithelium (RPE). Stasis and haemolysis in the choriocapillaris and choroidal vessels were more frequent after aflibercept treatment, which caused hypertrophy and death of individual RPE cells. The area of the CC was significantly reduced after both drugs compared with controls, but the reduction of the CC endothelium thickness, number of fenestrations and the areas with haemolysis were more pronounced after aflibercept. Conclusions Ranibizumab permeated the retina through intercellular spaces, whereas aflibercept was taken up by neuronal and RPE cells. Aflibercept induced protein complex formation and more haemolysis in the choriocapillaris, leading to individual RPE cell death. The clinical significance and relation of these findings to the Fc domain or to other characteristics of aflibercept remain to be investigated.
Experimental Eye Research | 2011
Antje Biesemeier; Ulrich Schraermeyer; O. Eibl
Energy-filtered analytical transmission electron microscopy was used to image the ultrastructure and determine quantitatively the chemical composition of pigment granules of the choroid and retinal pigment epithelium of two healthy human donors, aged 68 and 85 years. The electron microscopy preparation procedure did not affect the autofluorescence of melanolipofuscin and lipofuscin granules, since staining was omitted during sample preparation. Oval melanosomes, melanolipofuscin and lipofuscin granules were observed, having sizes of about 1.5 μm×0.5 μm, and were analyzed using energy-dispersive X-ray microanalysis and electron energy loss spectroscopy. Up to now, these pigments could only be identified by scattering contrast in bright field images, with melanosomes having dark contrast and lipofuscin being much brighter. High-precision energy-dispersive X-ray microanalysis of pigment granules (>15,000 integrated counts in the oxygen K(α) peak) yielded minimum detectable mole fractions of about 0.02 at% for copper and zinc. For the first time, quantitative analytical electron microscopy yielded the chemical composition of the different pigments without prior isolation from the tissue. This is important to better understand physical and chemical properties of the pigments and their metabolism and turnover. The composition of melanosomes and lipofuscin can clearly be distinguished by the applied methods. Melanosomes were the pigments with largest oxygen (about 5 at%) and nitrogen (about 10 at%) mole fractions. The S/N ratio determination demonstrated a high pheomelanin content of the melanosomes. Lipofuscin had a significantly smaller oxygen mole fraction (about 4 at%) and nitrogen was found to be only slightly above the limit of detection (0.4 at%). For comparison, the cytoplasm contained oxygen and nitrogen mole fractions of 3 at% and 0.8 at%. Bright field images showed melanolipofuscin granules having a core-shell structure with a dark inner and a bright outer fraction. The dark fraction had a chemical composition close to the melanosomes and the composition of the bright fraction could be distinguished from that of lipofuscin due to a significantly increased nitrogen mole fraction in the melanolipofuscin granule. For all pigments observed the oxygen mole fraction yielded a positive correlation with the calcium mole fraction as previously established for melanosomes. Only lipofuscin contained measurable phosphorus mole fractions, which also correlated positively with oxygen. In lipofuscin, mole fractions of nitrogen were significantly smaller than in melanosomes and only indicated a small fraction of proteins. In contrast, the phosphorus mole fraction was significantly larger indicating the presence of significant amounts of phospholipids. Copper and zinc mole fractions were larger than 0.1at% in the melanosomes, but were below the detection limit in the lipofuscin granules. Compared to melanosomes of monkeys and rats analyzed beforehand, human retinal pigment epithelium melanosomes contained the highest amount of zinc, which even exceeded the calcium mole fraction. Trace elements like zinc are of great importance for metabolism and anti-oxidative mechanisms and also play a role in the progression of age related macular degeneration. They can now be investigated by quantitative analytical electron microscopy.
PLOS ONE | 2011
Sylvie Julien; Antje Biesemeier; Despina Kokkinou; O. Eibl; Ulrich Schraermeyer
Background Age-related macular degeneration (AMD) is associated with lipofuscin accumulation whereas the content of melanosomes decreases. Melanosomes are the main storage of zinc in the pigmented tissues. Since the elderly population, as the most affected group for AMD, is prone to zinc deficit, we investigated the chemical and ultrastructural effects of zinc deficiency in pigmented rat eyes after a six-month zinc penury diet. Methodology/Principal Findings Adult Long Evans (LE) rats were investigated. The control animals were fed with a normal alimentation whereas the zinc-deficiency rats (ZD-LE) were fed with a zinc deficient diet for six months. Quantitative Energy Dispersive X-ray (EDX) microanalysis yielded the zinc mole fractions of melanosomes in the retinal pigment epithelium (RPE). The lateral resolution of the analysis was 100 nm. The zinc mole fractions of melanosomes were significantly smaller in the RPE of ZD-LE rats as compared to the LE control rats. Light, fluorescence and electron microscopy, as well as immunohistochemistry were performed. The numbers of lipofuscin granules in the RPE and of infiltrated cells (Ø>3 µm) found in the choroid were quantified. The number of lipofuscin granules significantly increased in ZD-LE as compared to control rats. Infiltrated cells bigger than 3 µm were only detected in the choroid of ZD-LE animals. Moreover, the thickness of the Bruchs membrane of ZD-LE rats varied between 0.4–3 µm and thin, rangy ED1 positive macrophages were found attached at these sites of Bruchs membrane or even inside it. Conclusions/Significance In pigmented rats, zinc deficiency yielded an accumulation of lipofuscin in the RPE and of large pigmented macrophages in the choroids as well as the appearance of thin, rangy macrophages at Bruchs membrane. Moreover, we showed that a zinc diet reduced the zinc mole fraction of melanosomes in the RPE and modulated the thickness of the Bruchs membrane.
Experimental Eye Research | 2015
Antje Biesemeier; Efdal Yoeruek; O. Eibl; Ulrich Schraermeyer
Iron (Fe) accumulation in cytoplasmic storages of the retina and retinal pigment epithelium (RPE) with age has been reported to be a contributing factor to the onset and progression of Age-related Macular Degeneration (AMD). This work investigated whether iron can also be stored in specialized metal-binding melanosomes of the RPE and choroid and in age pigments of the RPE (lipofuscin and melanolipofuscin). As accumulation of debris in Bruchs membrane is an additional hallmark of AMD, the elemental composition of Bruchs membrane was also investigated. Perimacular sections of the retina-choroid complex of six eyes of AMD donors and of seven age-matched healthy controls were investigated using Analytical Electron Microscopy (AEM). The melanosomes of the RPE and choroidal melanocytes of all AMD donors contained about two times higher iron mole fractions (0.06-0.07 at%) compared to the controls, which showed only minor iron mole fractions at or below the detection limit of 0.02 at%. Only melanosomes that contained iron, showed also significant lead peaks (both AMD and control about 0.08 at%). In addition, the electron-dense part of melanolipofuscin granules in the RPE accumulated iron and lead, both for control and AMD donors. Iron in lipofuscin was below the detection limit. The elastic layer of Bruchs membrane of all AMD donors also contained significantly higher iron mole fractions compared to controls (about 0.08 at% Fe), predominantly in areas that were also rich in calcium (Ca) and phosphorus (P), suggesting calcification. Indeed, five of the six AMD donors but only one of the seven controls showed nanocrystalline hydroxyapatite calcifications. Note that such nanocrystalline material can only be detected in EM samples without heavy metal (osmiumtetroxide, uranylacetate) staining. In conclusion, iron accumulation in melanosomal storages and within calcified Bruchs membrane is more pronounced in donors suffering from AMD compared to age-matched controls. This work underlines the common hypothesis that heavy metal homeostasis plays an important role in age-related neuropathy.
Journal of Neurochemistry | 2016
Antje Biesemeier; Oliver Eibl; Santhana Eswara; Jean-Nicolas Audinot; Tom Wirtz; Gianni Pezzoli; Fabio A. Zucca; Luigi Zecca; Ulrich Schraermeyer
Neuromelanin (NM) is a compound which highly accumulates mainly in catecholamine neurons of the substantia nigra (SN), and is contained in organelles (NM‐containing organelles) with lipid bodies and proteins. These neurons selectively degenerate in Parkinsons disease and NM can play either a protective or toxic role. NM‐containing organelles of SN were investigated by Analytical Electron Microscopy (AEM) and Nano‐Secondary Ion Mass Spectrometry (NanoSIMS) within human tissue sections with respect to ultrastructure and elemental composition. Within the NM‐containing organelle, the single NM granules and lipid bodies had sizes of about 200–600 nm. Energy‐Dispersive X‐ray microanalysis spectra of the NM granules and lipid bodies were acquired with 100 nm beam diameter in AEM, NanoSIMS yielded elemental maps with a lateral resolution of about 150 nm. AEM yielded the quantitative elemental composition of NM granules and bound metals, e.g., iron with a mole fraction of about 0.15 atomic percent. Chemical analyses by AEM and NanoSIMS were consistent at the subcellular level so that nanoSIMS measurements have been quantitated. In NM granules of SN from healthy subjects, a significant amount of S, Fe, and Cu was found. In lipid bodies an amount of P consistent with the presence of phospholipids was measured. The improved detection limits of nanoSIMS offer new possibilities for chemical mapping, high‐sensitivity trace element detection, and reduced acquisition times. Variations between individual NM granules can now be investigated effectively and quantitatively by NanoSIMS mapping Cu and Fe. This should yield new insight into the changes in chemical composition of NM pigments during healthy aging and disease.
Micron | 2011
Antje Biesemeier; Ulrich Schraermeyer; O. Eibl
Energy-filtered Analytical Electron Microscopy (AEM) was used to image the ultrastructure and determine quantitatively the chemical composition of rat melanosomes of the choroid and the Retinal Pigment Epithelium (RPE). For the first time, the effect of staining in elemental analysis of melanosomes was investigated. Detection limits and accuracies of the applied methods were determined. Compared to previous work applying only quantitative Energy Dispersive X-ray microanalysis (EDX) in the TEM (Eibl, O., et al., 2006. Micron 37, 262), here we present a combined quantitative EDX and Electron Energy Loss Spectroscopy (EELS) analysis, including N. This yields the fraction of eumelanin and pheomelanin in melanosomes by the S/N mole fraction ratio. Melanosomes of the sepia ink sac, used as eumelanin standard, showed an S/N mole fraction ratio of <0.004. Thus, they consist primarily of eumelanin as reported by degradation analysis. In contrast, melanosomes of the rats contained mixed melanin with significant amounts of pheomelanin (S/N 0.02) in the RPE and the choroid. Consistent with the previous publication, it was shown that oxygen mole fractions are especially large in melanosomes (7-10 at.%) compared to other cell compartments, e.g. 2-4 at.% oxygen in the cytoplasm. In the melanosomes of non-stained tissue, the oxygen mole fraction clearly correlated with the Ca mole fraction. EDX spectra used for quantitative analysis had about 15,000 net counts under the oxygen peak, which is necessary to obtain (i) a small statistical error for oxygen and (ii) optimum minimum detectable mole fractions for S, Ca and transition metals. The precise determination of the oxygen mole fraction in melanosomes is important for understanding metabolism. Therefore, a detailed analysis was carried out on the possible errors affecting quantification. While O, S, and N mole fractions yielded similar results in stained and non-stained ocular melanosomes of rats, transition metals can only be determined reliably in non-stained tissues. High-precision EDX analysis of melanosomes yielded minimum detectable mole fractions of less than 0.04 at.% for Cu and Zn, these elements were present in melanosomes with mole fractions of about 0.3 at.% and 0.1at.%, respectively. Zn is of great importance for metabolism and for age related macular degeneration. Its mole fraction in melanosomes of rats is large enough to be detected and to be quantitatively analyzed by EDX spectroscopy. Ultrastructural information can now be correlated to the elemental composition. This is important to better understand the physical and chemical properties of melanosomal metabolism and turnover.
Cell and Tissue Research | 2010
Antje Biesemeier; Florian Kreppel; Stefan Kochanek; Ulrich Schraermeyer
Premelanosomes are presumed to be essential for melanogenesis in melanocytes and pre-natal retinal pigment epithelium (RPE) cells. We analysed melanin synthesis in adenoviral-transduced tyrosinase-gene-expressing amelanotic RPE (ARPE) 19 cells to determine whether premelanosome formation is needed for post-natal melanogenesis. The synthesis of melanogenic proteins and melanin granules was investigated by immunocytochemistry and light and electron microscopy. The occurrence of tyrosinase was analysed ultrastructurally by dihydroxyphenylalanine histochemistry. The viability of transduced cell cultures was examined via MTT assay. We found active tyrosinase in small granule-like vesicles throughout the cytoplasm and in the endoplasmic reticulum and nuclear membrane. Tyrosinase was also associated with multi-vesicular and multi-lamellar organelles. Typical premelanosomes, structural protein PMEL17, tyrosinase-related protein 1 and classic melanosomal stages I–IV were not detected. Instead, melanogenesis took place inside multi-vesicular and multi-lamellar bodies of unknown origin. Viability was not affected up to 10 days after transduction. We thus demonstrate a pathway of melanin formation lacking typical hallmarks of melanogenesis.
Graefes Archive for Clinical and Experimental Ophthalmology | 2007
Sylvie Julien; Norbert Kociok; Florian Kreppel; Jürgen Kopitz; Stefan Kochanek; Antje Biesemeier; Petra Blitgen-Heinecke; Peter Heiduschka; Ulrich Schraermeyer
BackgroundTyrosinase (EC 1.14.18.1) is the key enzyme of melanin pigment formation and it is unclear whether it is synthesized in human postnatal retinal pigment epithelium (RPE). In this study, we investigated if phagocytosis of rod outer segments (ROS) can increase tyrosinase expression in vitro.MethodsPrimary cultures of human RPE cells were fed with isolated ROS from cattle and with latex particles. After phagocytosis, RPE cells were tested for tyrosinase presence and activity with several independent methods: (1) immunocytochemistry with anti-tyrosinase antibodies and (2) ultrastructural as well as light microscopic DOPA histochemistry; (3) mRNA was isolated from human RPE before incubation with ROS and 5, 20 and 40 h after feeding with ROS. The amount of tyrosinase mRNA was determined quantitatively by real-time reverse transcription polymerase chain reaction (RT-PCR), and the tyrosinase activity was investigated by measuring tyrosine hydroxylase activity using [3H]tyrosine.ResultsTyrosinase was found in fed RPE cells using these methods, but was absent without feeding. Furthermore, we showed co-localization of rhodopsin and tyrosinase in the fed RPE cells. Contrary to tyrosinase activity, the mRNA for tyrosinase was clearly present in the cultured RPE cells which had not been exposed to ROS, decreased significantly from 5 h after exposure to ROS and returned to its original non-fed level 40 h after ROS feeding.ConclusionOur study does not present new evidence that de novo melanogenesis takes place in the adult differentiated RPE. However, in contrast to the classic hypothesis, which states that tyrosinase is only detected in embryos, we provide evidence with several independent methods that the expression of tyrosinase and its enzymatic activity are induced in cultured human adult RPE by phagocytosis of ROS.
Journal of Photochemistry and Photobiology B-biology | 2008
Antje Biesemeier; Despina Kokkinou; Sylvie Julien; Peter Heiduschka; Mark Berneburg; Karl Ulrich Bartz-Schmidt; Ulrich Schraermeyer
To investigate the effects of zinc supplementation on human amelanotic (ARPE-19) and native pigmented retinal pigment epithelial cells (hRPE) under normal light conditions and after ultraviolet A light exposure. hRPE cells, containing both melanin and lipofuscin granules, were prepared from human donor eyes of 60-70 year old patients. Cells of the amelanotic ARPE-19 cell line and pigmented hRPE cells were treated with zinc chloride and subjected to oxidative stress by UV-A irradiation. Intracellular H(2)O(2) formation was measured using a fluorescence oxidation assay. Additionally, apoptosis and viability assays were performed. Control cells were treated identically except for irradiation and zinc supplementation. Under normal light conditions, zinc treated hRPE cells produced less H(2)O(2) than unsupplemented hRPE cells. Viability and apoptosis events did not change. After UV-A irradiation, ARPE and hRPE cells were greatly impaired in all tests performed compared to the non-irradiated controls. No differences were found after zinc supplementation. hRPE cells showed a higher apoptosis and mortality rate than non-pigmented cells when stressed by UV-A light. ARPE cells never showed any zinc related effects. In contrast, without irradiation, zinc supplementation reduced H(2)O(2) production in pigmented hRPE cells slightly. We did not find any zinc effect in irradiated hRPE cells. After UV light exposure, pigmented cells showed a higher apoptosis and mortality than cells lacking any pigmentation. We conclude that cells with pigmentation consisting of melanin and lipofuscin granules have more prooxidative than antioxidative capacity when stressed by UV light exposure compared to cells lacking any pigmentation.