Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antje Grosche is active.

Publication


Featured researches published by Antje Grosche.


Frontiers in Endocrinology | 2013

GABA and Glutamate Uptake and Metabolism in Retinal Glial (Müller) Cells

Andreas Bringmann; Antje Grosche; Thomas Pannicke; Andreas Reichenbach

Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and γ-aminobutyric acid (GABA). Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the shaping and termination of the synaptic activity, particularly in the inner retina. Reactive Müller cells are neuroprotective, e.g., by the clearance of excess extracellular glutamate, but may also contribute to neuronal degeneration by a malfunctioning or even reversal of glial glutamate transporters, or by a downregulation of the key enzyme, glutamine synthetase. This review summarizes the present knowledge about the role of Müller cells in the clearance and metabolization of extracellular glutamate and GABA. Some major pathways of GABA and glutamate metabolism in Müller cells are described; these pathways are involved in the glutamate-glutamine cycle of the retina, in the defense against oxidative stress via the production of glutathione, and in the production of substrates for the neuronal energy metabolism.


Molecular & Cellular Proteomics | 2016

The Proteome of Native Adult Müller Glial Cells From Murine Retina

Antje Grosche; Alexandra Hauser; Marlen F. Lepper; Rebecca Mayo; Christine von Toerne; Juliane Merl-Pham; Stefanie M. Hauck

To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial physiology. This provides the basis to allow the discovery of novel glial specializations and will enable us to elucidate the role of Müller cells in retinal pathologies — a topic still controversially discussed.


Glia | 2015

Altered microglial phagocytosis in GPR34-deficient mice

Julia Preissler; Antje Grosche; Vera Lede; Diana Le Duc; Katja Krügel; Vitali Matyash; Frank Szulzewsky; Sonja Kallendrusch; Kerstin Immig; Helmut Kettenmann; Ingo Bechmann; Torsten Schöneberg; Angela Schulz

GPR34 is a Gi/o protein‐coupled receptor (GPCR) of the nucleotide receptor P2Y12‐like group. This receptor is highly expressed in microglia, however, the functional relevance of GPR34 in these glial cells is unknown. Previous results suggested an impaired immune response in GPR34‐deficient mice infected with Cryptococcus neoformans. Here we show that GPR34 deficiency results in morphological changes in retinal and cortical microglia. RNA sequencing analysis of microglia revealed a number of differentially expressed transcripts involved in cell motility and phagocytosis. We found no differences in microglial motility after entorhinal cortex lesion and in response to laser lesion. However, GPR34‐deficient microglia showed reduced phagocytosis activity in both retina and acutely isolated cortical slices. Our study identifies GPR34 as an important signaling component controlling microglial function, morphology and phagocytosis. GLIA 2015;63:206–215


Neurochemical Research | 2012

Mechanisms of VEGF- and Glutamate-Induced Inhibition of Osmotic Swelling of Murine Retinal Glial (Müller) Cells: Indications for the Involvement of Vesicular Glutamate Release and Connexin-Mediated ATP Release

Erik Brückner; Antje Grosche; Thomas Pannicke; Peter Wiedemann; Andreas Reichenbach; Andreas Bringmann

We determined the mechanisms of glutamate and ATP release from murine retinal glial (Müller) cells by pharmacological manipulation of the vascular endothelial growth factor (VEGF)- and glutamate-induced inhibition of cellular swelling under hypoosmotic conditions. It has been shown that exogenous glutamate inhibits hypoosmotic swelling of rat Müller cells via the induction of the release of ATP (Uckermann et al. in J Neurosci Res 83:538–550, 53). VEGF was shown to inhibit hypoosmotic swelling of rat Müller cells by inducing the release of glutamate (Wurm et al. in J Neurochem 104:386–399, 55). The swelling-inhibitory effect of VEGF in murine Müller cells was blocked by an inhibitor of vesicular exocytosis, by a modulator of the allosteric site of vesicular glutamate transporters, and by inhibitors of phospholipase C and protein kinase C. The swelling-inhibitory effect of glutamate in murine Müller cells was prevented by inhibitors of connexin hemichannels. The effects of both VEGF and glutamate were blocked by tetrodotoxin and by an inhibitor of T-type voltage-gated calcium channels. Murine Müller cells display connexin-43 immunoreactivity. The data suggest that Müller cells of the murine retina may release glutamate by vesicular exocytosis, whereas ATP is released through connexin hemichannels.


PLOS ONE | 2013

Versatile and simple approach to determine astrocyte territories in mouse neocortex and hippocampus.

Antje Grosche; Jens Grosche; Mark Tackenberg; Dorit Scheller; Gwendolyn Gerstner; Annett Gumprecht; Thomas Pannicke; Petra G. Hirrlinger; Ulrika Wilhelmsson; Kerstin Hüttmann; Wolfgang Härtig; Christian Steinhäuser; Milos Pekny; Andreas Reichenbach

Background Besides their neuronal support functions, astrocytes are active partners in neuronal information processing. The typical territorial structure of astrocytes (the volume of neuropil occupied by a single astrocyte) is pivotal for many aspects of glia–neuron interactions. Methods Individual astrocyte territorial volumes are measured by Golgi impregnation, and astrocyte densities are determined by S100β immunolabeling. These data are compared with results from conventionally applied methods such as dye filling and determination of the density of astrocyte networks by biocytin loading. Finally, we implemented our new approach to investigate age-related changes in astrocyte territories in the cortex and hippocampus of 5- and 21-month-old mice. Results The data obtained by our simplified approach based on Golgi impregnation were compared to previously published dye filling experiments, and yielded remarkably comparable results regarding astrocyte territorial volumes. Moreover, we found that almost all coupled astrocytes (as indicated by biocytin loading) were immunopositive for S100β. A first application of this new experimental approach gives insight in age-dependent changes in astrocyte territorial volumes. They increased with age, while cell densities remained stable. In 5-month-old mice, the overlap factor was close to 1, revealing little or no interdigitation of astrocyte territories. However, in 21-month-old mice, the overlap factor was more than 2, suggesting that processes of adjacent astrocytes interdigitate. Conclusion Here we verified the usability of a simple, versatile method for assessing astrocyte territories and the overlap factor between adjacent territories. Second, we found that there is an age-related increase in territorial volumes of astrocytes that leads to loss of the strict organization in non-overlapping territories. Future studies should elucidate the physiological relevance of this adaptive reaction of astrocytes in the aging brain and the methods presented in this study might be a powerful tool to do so.


Neuroscience | 2013

Region-specific expression of vesicular glutamate and GABA transporters under various ischaemic conditions in mouse forebrain and retina

Dominik Michalski; Wolfgang Härtig; Katja Krügel; Robert H. Edwards; M. Böddener; L. Böhme; Thomas Pannicke; Andreas Reichenbach; Antje Grosche

There is accumulating evidence that glutamate and GABA release are key mechanisms of ischaemic events in the CNS. However, data on the expression of involved transporters for these mediators are inconsistent, potentially impeding further neuroprotective approaches. Here, we applied immunofluorescence labelling to characterise the expression pattern of vesicular glutamate (VGLUT) and GABA transporters (VGAT) after acute focal cerebral ischaemia and in two models of retinal ischaemia. Mice were subjected to filament-based focal cerebral ischaemia predominantly involving the middle cerebral artery territory, also leading to retinal ischaemia due to central retinal artery occlusion (CRAO). Alternatively, retinal ischaemia was induced by a transient increase of the intraocular pressure (HIOP). One day after ischaemia onset, diminished immunolabelling of neuronal nuclei and microtubule-associated protein 2-positive structures were found in the ipsilateral neocortex, subcortex and the retina, indicating neuronal degeneration. VGLUT1 expression did not change significantly in ischaemic tissues whereas VGLUT2 was down-regulated in specific areas of the brain. VGLUT3 expression was only slightly down-regulated in the ischaemia-affected neocortex, and was found to form clusters on fibrils of unknown origin in the ischaemic lateral hypothalamus. In contrast, retinae subjected to CRAO or HIOP displayed a rapid loss of VGLUT3-immunoreactivity. The expression of VGAT appears resistant to ischaemia as there was no significant alteration in all the regions analysed. In summary, these data indicate a region- and subtype-specific change of VGLUT expression in the ischaemia-affected CNS, whose consideration might help to generate specific neuroprotective strategies.


Journal of Neurochemistry | 2014

Nerve growth factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by inducing glial cytokine release

Tarcyane Barata Garcia; Thomas Pannicke; Stefanie Vogler; Benjamin-Andreas Berk; Antje Grosche; Peter Wiedemann; Johannes Seeger; Andreas Reichenbach; Anderson Manoel Herculano; Andreas Bringmann

Osmotic swelling of neurons and glial cells contributes to the development of retinal edema and neurodegeneration. We show that nerve growth factor (NGF) inhibits the swelling of glial (Müller) and bipolar cells in rat retinal slices induced by barium‐containing hypoosmotic solution. NGF also reduced Müller and bipolar cell swelling in the post‐ischemic retina. On the other hand, NGF prevented the swelling of freshly isolated Müller cells, but not of isolated bipolar cells, suggesting that NGF induces a release of factors from Müller cells that inhibit bipolar cell swelling in retinal slices. The inhibitory effect of NGF on Müller cell swelling was mediated by activation of TrkA (the receptor tyrosine kinase A), but not p75NTR, and was prevented by blockers of metabotropic glutamate, P2Y1, adenosine A1, and fibroblast growth factor receptors. Basic fibroblast growth factor fully inhibited the swelling of freshly isolated Müller cells, but only partially the swelling of isolated bipolar cells. In addition, glial cell line‐derived neurotrophic factor and transforming growth factor‐β1, but not epidermal growth factor and platelet‐derived growth factor, reduced the swelling of bipolar cells. Both Müller and bipolar cells displayed TrkA immunoreactivity, while Müller cells were also immunostained for p75NTR and NGF. The data suggest that the neuroprotective effect of NGF in the retina is in part mediated by prevention of the cytotoxic glial and bipolar cell swelling.


Journal of Neurochemistry | 2013

Hypoosmotic and glutamate-induced swelling of bipolar cells in the rat retina: comparison with swelling of Müller glial cells

Stefanie Vogler; Antje Grosche; Thomas Pannicke; Elke Ulbricht; Peter Wiedemann; Andreas Reichenbach; Andreas Bringmann

Regulation of cellular volume is of great importance to avoid changes in neuronal excitability resulting from a decrease in the extracellular space volume. We compared the volume regulation of retinal glial (Müller) and neuronal (bipolar) cells under hypoosmotic and glutamate‐stimulated conditions. Freshly isolated slices of the rat retina were superfused with a hypoosmotic solution (60% osmolarity; 4 min) or with a glutamate (1 mM)‐containing isoosmotic solution (15 min), and the size changes of Müller and bipolar cell somata were recorded. Bipolar cell somata, but not Müller cell somata, swelled under hypoosmotic conditions and in the presence of glutamate. The hypoosmotic swelling of bipolar cell somata might be mediated by sodium flux into the cells, because it was not observed under extracellular sodium‐free conditions, and was induced by activation of metabotropic glutamate receptors and sodium‐dependent glutamate transporters. The glutamate‐induced swelling of bipolar cell somata was mediated by sodium chloride flux into the cells induced by activation of NMDA‐ and non‐NMDA glutamate receptors, glutamate transporters, and voltage‐gated sodium channels. The glutamate‐induced swelling of bipolar cell somata was abrogated by adenosine and γ‐aminobutyric acid, but not by vascular endothelial growth factor and ATP. The data may suggest that Müller cells, in contrast to bipolar cells, possess endogenous mechanisms which tightly regulate the cellular volume in response to hypoosmolarity and prolonged glutamate exposure. Inhibitory retinal transmission may regulate the volume of bipolar cells, likely by inhibition of the excitatory action of glutamate.


Neuroscience | 2013

Osteopontin inhibits osmotic swelling of retinal glial (Müller) cells by inducing release of VEGF

V. Wahl; Stefanie Vogler; Antje Grosche; Thomas Pannicke; Marius Ueffing; Peter Wiedemann; Andreas Reichenbach; Stefanie M. Hauck; Andreas Bringmann

Osmotic swelling of retinal neurons and glial cells is an important pathogenic factor of retinal edema formation. Here, we show that the neuroprotective factor osteopontin (OPN), which is released from retinal glial (Müller) cells after stimulation of the cells with glial cell line-derived neurotrophic factor (Del Río et al., 2011, Glia 59:821-832), inhibits the swelling of rat Müller cells induced by hypoosmotic exposure of retinal slices in the presence of barium ions and H₂O₂, respectively, and in slices of postischemic retinas. OPN did not inhibit the hypoosmotic swelling of bipolar cells in slices of control and postischemic retinas. The inhibitory effect of OPN on Müller cell swelling was dose-dependent, with a half-maximal effect at ∼0.6 ng/ml. The effect of OPN was abrogated in the presence of pharmacological blockers of vascular endothelial growth factor (VEGF) receptor-2, metabotropic glutamate receptors, and purinergic receptors (P2Y₁, adenosine A1 receptors), as well as of a neutralizing anti-VEGF antibody. The data suggest that OPN induces the release of VEGF, glutamate, ATP, and adenosine from Müller cells. The effect of OPN was also prevented by blockers of voltage-gated sodium channels (tetrodotoxin), T-type voltage-gated calcium channels (kurtoxin), potassium channels (clofilium), and chloride channels 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). The swelling-inhibitory effect of OPN was dependent on intracellular calcium signaling, activation of phospholipase C and protein kinase C, and vesicular exocytosis of glutamate. In retinal slices, Müller glial cells display immunoreactivity of OPN. The data suggest that Müller cell-derived OPN has (in addition to the effects on photoreceptors and retinal neurons) autocrine effects. The neuroprotective effects of OPN may be in part mediated by the prevention of cytotoxic Müller cell swelling and the release of VEGF and adenosine from Müller cells.


Pflügers Archiv: European Journal of Physiology | 2014

Purinergic neuron-glia interactions in sensory systems

Christian Lohr; Antje Grosche; Andreas Reichenbach; Daniela Hirnet

The purine adenosine 5′-triphosphate (ATP) and its breakdown products, ADP and adenosine, act as intercellular messenger molecules throughout the nervous system. While ATP contributes to fast synaptic transmission via activation of ionotropic P2X receptors as well as neuromodulation via metabotropic P2Y receptors, ADP and adenosine only stimulate P2Y and P1 receptors, respectively, thereby adjusting neuronal performance. Often glial cells are recipient as well as source for extracellular ATP. Hence, purinergic neuron-glia signalling contributes bidirectionally to information processing in the nervous system, including sensory organs and brain areas computing sensory information. In this review, we summarize recent data of purinergic neuron-glia communication in two sensory systems, the visual and the olfactory systems. In both retina and olfactory bulb, ATP is released by neurons and evokes Ca2+ transients in glial cells, viz. Müller cells, astrocytes and olfactory ensheathing cells. Glial Ca2+ signalling, in turn, affects homeostasis of the nervous tissue such as volume regulation and control of blood flow. In addition, ‘gliotransmitter’ release upon Ca2+ signalling—evoked by purinoceptor activation—modulates neuronal activity, thus contributing to the processing of sensory information.

Collaboration


Dive into the Antje Grosche's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Pauly

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge