Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antje Havemeyer is active.

Publication


Featured researches published by Antje Havemeyer.


Journal of Biological Chemistry | 2006

Identification of the Missing Component in the Mitochondrial Benzamidoxime Prodrug-converting System as a Novel Molybdenum Enzyme

Antje Havemeyer; Florian Bittner; Silke Wollers; Ralf R. Mendel; Thomas Kunze; Bernd Clement

Amidoximes can be used as prodrugs for amidines and related functional groups to enhance their intestinal absorption. These prodrugs are reduced to their active amidines. Other N-hydroxylated structures are mutagenic or responsible for toxic effects of drugs and are detoxified by reduction. In this study, a N-reductive enzyme system of pig liver mitochondria using benzamidoxime as a model substrate was identified. A protein fraction free from cytochrome b5 and cytochrome b5 reductase was purified, enhancing 250-fold the minor benzamidoxime-reductase activity catalyzed by the membrane-bound cytochrome b5/NADH cytochrome b5 reductase system. This fraction contained a 35-kDa protein with homologies to the C-terminal domain of the human molybdenum cofactor sulfurase. Here it was demonstrated that this 35-kDa protein contains molybdenum cofactor and forms the hitherto ill defined third component of the N-reductive complex in the outer mitochondrial membrane. Thus, the 35-kDa protein represents a novel group of molybdenum proteins in eukaryotes as it forms the catalytic part of a three-component enzyme complex consisting of separate proteins. Supporting these findings, recombinant C-terminal domain of the human molybdenum cofactor sulfurase exhibited N-reductive activity in vitro, which was strictly dependent on molybdenum cofactor.


Journal of Biological Chemistry | 2010

Biochemical and Spectroscopic Characterization of the Human Mitochondrial Amidoxime Reducing Components hmARC-1 and hmARC-2 Suggests the Existence of a New Molybdenum Enzyme Family in Eukaryotes

Bettina Wahl; Debora Reichmann; Dimitri Niks; Nina Krompholz; Antje Havemeyer; Bernd Clement; Tania Messerschmidt; Martin Rothkegel; Harald Biester; Russ Hille; Ralf R. Mendel; Florian Bittner

The mitochondrial amidoxime reducing component mARC is a newly discovered molybdenum enzyme that is presumed to form the catalytical part of a three-component enzyme system, consisting of mARC, heme/cytochrome b5, and NADH/FAD-dependent cytochrome b5 reductase. mARC proteins share a significant degree of homology to the molybdenum cofactor-binding domain of eukaryotic molybdenum cofactor sulfurase proteins, the latter catalyzing the post-translational activation of aldehyde oxidase and xanthine oxidoreductase. The human genome harbors two mARC genes, referred to as hmARC-1/MOSC-1 and hmARC-2/MOSC-2, which are organized in a tandem arrangement on chromosome 1. Recombinant expression of hmARC-1 and hmARC-2 proteins in Escherichia coli reveals that both proteins are monomeric in their active forms, which is in contrast to all other eukaryotic molybdenum enzymes that act as homo- or heterodimers. Both hmARC-1 and hmARC-2 catalyze the N-reduction of a variety of N-hydroxylated substrates such as N-hydroxy-cytosine, albeit with different specificities. Reconstitution of active molybdenum cofactor onto recombinant hmARC-1 and hmARC-2 proteins in the absence of sulfur indicates that mARC proteins do not belong to the xanthine oxidase family of molybdenum enzymes. Moreover, they also appear to be different from the sulfite oxidase family, because no cysteine residue could be identified as a putative ligand of the molybdenum atom. This suggests that the hmARC proteins and sulfurase represent members of a new family of molybdenum enzymes.


Biochemical Journal | 2011

Reduction of N ω -hydroxy-L-arginine by the mitochondrial amidoxime reducing component (mARC)

Joscha Kotthaus; B. Wahl; Antje Havemeyer; D. Schade; D. Garbe-Schönberg; R. Mende; Florian Bittner; Bernd Clement

NOSs (nitric oxide synthases) catalyse the oxidation of L-arginine to L-citrulline and nitric oxide via the intermediate NOHA (N(ω)-hydroxy-L-arginine). This intermediate is rapidly converted further, but to a small extent can also be liberated from the active site of NOSs and act as a transportable precursor of nitric oxide or potent physiological inhibitor of arginases. Thus its formation is of enormous importance for the nitric-oxide-generating system. It has also been shown that NOHA is reduced by microsomes and mitochondria to L-arginine. In the present study, we show for the first time that both human isoforms of the newly identified mARC (mitochondrial amidoxime reducing component) enhance the rate of reduction of NOHA, in the presence of NADH cytochrome b₅ reductase and cytochrome b₅, by more than 500-fold. Consequently, these results provide the first hints that mARC might be involved in mitochondrial NOHA reduction and could be of physiological significance in affecting endogenous nitric oxide levels. Possibly, this reduction represents another regulative mechanism in the complex regulation of nitric oxide biosynthesis, considering a mitochondrial NOS has been identified. Moreover, this reduction is not restricted to NOHA since the analogous arginase inhibitor NHAM (N(ω)-hydroxy-N(δ)-methyl-L-arginine) is also reduced by this system.


Drug Metabolism Reviews | 2011

The fourth mammalian molybdenum enzyme mARC: current state of research

Antje Havemeyer; Juliane Lang; Bernd Clement

The mitochondrial amidoxime-reducing component (mARC) is a recently discovered molybdenum-containing enzyme in mammalians. Upon reconstitution with the electron transport proteins, cytochrome b5 and its reductase, this molybdenum enzyme is capable of reducing N-hydroxylated compounds. It was named mARC because the N-reduction of amidoxime structures was initially studied using this isolated mitochondrial enzyme. All hitherto analyzed mammalian genomes harbor two mARC genes: molybdenum cofactor (Moco) sulferase C-terminal domain MOSC1 and MOSC2. Proteins encoded by these genes represent the simplest eukaryotic molybdenum enzymes, in that they bind only the Moco. It is also suggested that they are members of a new family of molybdenum enzymes. mARC and its N-reductive enzyme system plays a major role in drug metabolism, especially in the activation of so-called “amidoxime-prodrugs” and in the detoxification of N-hydroxylated xenobiotics, though its physiological relevance is largely unknown.


Drug Metabolism and Disposition | 2005

Hepatic, extrahepatic, microsomal, and mitochondrial activation of the N-hydroxylated prodrugs benzamidoxime, guanoxabenz, and Ro 48-3656 ([[1-[(2s)-2-[[4-[(hydroxyamino)iminomethyl]benzoyl]amino]-1-oxopropyl]-4-piperidinyl]oxy]-acetic acid).

Bernd Clement; Sabine Mau; Stephanie Deters; Antje Havemeyer

In previous studies, it was shown that liver microsomes from rabbit, rat, pig, and human are involved in the reduction of N-hydroxylated amidines, guanidines, and amidinohydrazones of various drugs and model compounds (Drug Metab Rev 34: 565–579). One responsible enzyme system, the microsomal benzamidoxime reductase, consisting of cytochrome b5, its reductase, and a cytochrome P450 isoenzyme, was isolated from pig liver microsomes (J Biol Chem 272:19615–19620). Further investigations followed to establish whether such enzyme systems are also present in microsomes of other organs such as brain, lung, and intestine. In addition, the mitochondrial reduction in human and porcine liver and kidney preparations was studied. The reductase activities were measured by following the reduction of benzamidoxime to benzamidine, guanoxabenz to guanabenz, and Ro 48-3656 ([[1-[(2S)-2-[[4-[(hydroxyamino)iminomethyl]benzoyl]amino]-1-oxopropyl]-4-piperidinyl]oxy]-acetic acid) to Ro 44-3888 ([[1-[(2S)-2-[[4-(aminoiminomethyl)benzoyl]amino]-1-oxopropyl]-4-piperidinyl]oxy]-acetic acid). Interestingly, preparations of all tested organs were capable of reducing the three compounds. The highest specific rates were found in kidney followed by liver, brain, lung, and intestine, and usually the mitochondrial reduction rates were superior. From the determined characteristics, similarities between the enzyme systems in the different organs and organelles were detected. Furthermore, properties of the benzamidoxime reductase located in the outer membrane of pig liver mitochondria were studied. In summary, these results demonstrate that in addition to the microsomal reduction, mitochondria are involved to a great extent in the activation of amidoxime prodrugs. The importance of extrahepatic metabolism in the reduction of N-hydroxylated prodrugs is demonstrated.


Drug Metabolism and Disposition | 2010

Reduction of N-Hydroxy-sulfonamides, Including N-Hydroxy-valdecoxib, by the Molybdenum-Containing Enzyme mARC

Antje Havemeyer; Sanja Grünewald; Bettina Wahl; Florian Bittner; Ralf R. Mendel; Péter Erdélyi; Janos Fischer; Bernd Clement

Purification of the mitochondrial enzyme responsible for reduction of N-hydroxylated amidine prodrugs led to the identification of two newly discovered mammalian molybdenum-containing proteins, the mitochondrial amidoxime reducing components mARC-1 and mARC-2 (Gruenewald et al., 2008). These 35-kDa proteins represent a novel group of molybdenum proteins in eukaryotes as they form a molybdenum cofactor-dependent enzyme system consisting of three separate proteins (Havemeyer et al., 2006). Each mARC protein reduces N-hydroxylated compounds after reconstitution with the electron transport proteins cytochrome b5 and b5 reductase. In continuation of our drug metabolism investigations (Havemeyer et al., 2006; Gruenewald et al., 2008), we present data from reconstituted enzyme systems with recombinant human and native porcine enzymes showing the reduction of N-hydroxy-sulfonamides (sulfohydroxamic acids) to sulfonamides: the N-hydroxy-sulfonamide N-hydroxy-valdecoxib (N-hydroxy-4-[5-methyl-3-phenyl-4-isoxazolyl]-benzenesulfonamide) represents a novel cyclooxygenase (COX)-2 inhibitor and is therefore a drug candidate in the treatment of diseases associated with rheumatic inflammation, pain, and fever. It was synthesized as an analog of the known COX-2 inhibitor valdecoxib (4-[5-methyl-3-phenyl-4-isoxazolyl]-benzenesulfonamide) (Talley et al., 2000). N-Hydroxy-valdecoxib had low in vitro COX-2 activity but showed significant analgesic activity in vivo and a prolonged therapeutic effect compared with valdecoxib (Erdélyi et al., 2008). In this report, we demonstrate that N-hydroxy-valdecoxib is enzymatically reduced to its pharmacologically active metabolite valdecoxib. Thus, N-hydroxy-valdecoxib acts as prodrug that is activated by the molybdenum-containing enzyme mARC.


Journal of Biological Chemistry | 2013

The involvement of mitochondrial amidoxime reducing components 1 and 2 and mitochondrial cytochrome b5 in N-reductive metabolism in human cells.

Birte Plitzko; Gudrun Ott; Debora Reichmann; Colin J. Henderson; C. Roland Wolf; Ralf R. Mendel; Florian Bittner; Bernd Clement; Antje Havemeyer

Background: N-Reduction is catalyzed by a molybdenum-dependent three-component enzyme system. Results: Essential components include mitochondrial but not microsomal cytochrome b5, and the mitochondrial amidoxime reducing components 1/2. Conclusion: CYB5 heme is required for activity, and contribution of a particular mARC isoform to N-reduction is dependent on its expression level. Significance: These findings contribute to the understanding of N-reductive pathway in detoxication and drug metabolism. The mitochondrial amidoxime reducing component mARC is a recently discovered molybdenum enzyme in mammals. mARC is not active as a standalone protein, but together with the electron transport proteins NADH-cytochrome b5 reductase (CYB5R) and cytochrome b5 (CYB5), it catalyzes the reduction of N-hydroxylated compounds such as amidoximes. The mARC-containing enzyme system is therefore considered to be responsible for the activation of amidoxime prodrugs. All hitherto analyzed mammalian genomes code for two mARC genes (also referred to as MOSC1 and MOSC2), which share high sequence similarities. By RNAi experiments in two different human cell lines, we demonstrate for the first time that both mARC proteins are capable of reducing N-hydroxylated substrates in cell metabolism. The extent of involvement is highly dependent on the expression level of the particular mARC protein. Furthermore, the mitochondrial isoform of CYB5 (CYB5B) is clearly identified as an essential component of the mARC-containing N-reductase system in human cells. The participation of the microsomal isoform (CYB5A) in N-reduction could be excluded by siRNA-mediated down-regulation in HEK-293 cells and knock-out in mice. Using heme-free apo-CYB5, the contribution of mitochondrial CYB5 to N-reductive catalysis was proven to strictly depend on heme. Finally, we created recombinant CYB5B variants corresponding to four nonsynonymous single nucleotide polymorphisms (SNPs). Investigated mutations of the heme protein seemed to have no significant impact on N-reductive activity of the reconstituted enzyme system.


Journal of Biological Inorganic Chemistry | 2015

The mammalian molybdenum enzymes of mARC

Gudrun Ott; Antje Havemeyer; Bernd Clement

The “mitochondrial amidoxime reducing component” (mARC) is the most recently discovered molybdenum-containing enzyme in mammals. All mammalian genomes studied to date contain two mARC genes: MARC1 and MARC2. The proteins encoded by these genes are mARC-1 and mARC-2 and represent the simplest form of eukaryotic molybdenum enzymes, only binding the molybdenum cofactor. In the presence of NADH, mARC proteins exert N-reductive activity together with the two electron transport proteins cytochrome b5 type B and NADH cytochrome b5 reductase. This enzyme system is capable of reducing a great variety of N-hydroxylated substrates. It plays a decisive role in the activation of prodrugs containing an amidoxime structure, and in detoxification pathways, e.g., of N-hydroxylated purine and pyrimidine bases. It belongs to a group of drug metabolism enzymes, in particular as a counterpart of P450 formed N-oxygenated metabolites. Its physiological relevance, on the other hand, is largely unknown. The aim of this article is to summarize our current knowledge of these proteins with a special focus on the mammalian enzymes and their N-reductive activity.


Xenobiotica | 2013

Activation of the anti-cancer agent upamostat by the mARC enzyme system

Danilo Froriep; Bernd Clement; Florian Bittner; Ralf R. Mendel; Debora Reichmann; Wolfgang Schmalix; Antje Havemeyer

Abstract 1. Upamostat (Mesupron®) is a new small molecule serine protease inhibitor. The drug candidate was developed to inhibit the urokinase-type plasminogen activator (uPA) system, which plays a major role in tumor invasion and metastasis. Upamostat is currently in clinical development as an anti-metastatic and non-cytotoxic agent against pancreatic and breast cancer. 2. Upamostat is the orally available amidoxime- (i.e. hydroxyamidine-) prodrug of the pharmacologically active form, WX-UK1. In this study, the reductive enzymatic activation of upamostat to its corresponding amidine WX-UK1 was analyzed. 3. The recently discovered molybdenum enzyme “mitochondrial Amidoxime Reducing Component” (mARC) catalyses together with its electron transport proteins cytochrome b5 and NADH cytochrome b5 reductase the reduction of N-hydroxylated prodrugs. In vitro biotransformation assays with porcine subcellular fractions and the reconstituted human enzymes demonstrate an mARC-dependent N-reduction of upamostat.


Chemical Research in Toxicology | 2014

Reduction of Sulfamethoxazole Hydroxylamine (SMX-HA) by the Mitochondrial Amidoxime Reducing Component (mARC)

Gudrun Ott; Birte Plitzko; Carmen Krischkowski; Debora Reichmann; Florian Bittner; Ralf R. Mendel; Thomas Kunze; Bernd Clement; Antje Havemeyer

Under high dose treatment with sulfamethoxazole (SMX)/trimethoprim (TMP), hypersensitivity reactions occur with a high incidence. The mechanism of this adverse drug reaction is not fully understood. Several steps in the toxification pathway of SMX were investigated. The aim of our study was to investigate the reduction of sulfamethoxazole hydroxylamine (SMX-HA) in this toxification pathway, which can possibly be catalyzed by the mARC-containing N-reductive enzyme system. Western blot analyses of subcellular fractions of porcine tissue were performed with antibodies against mARC-1, mARC-2, cytochrome b5 type B, and NADH cytochrome b5 reductase. Incubations of porcine and human subcellular tissue fractions and of the heterologously expressed human components of the N-reductive enzyme system were carried out with SMX-HA. mARC-1 and mARC-2 knockdown was performed in HEK-293 cells. Kinetic parameters of the heterologously expressed human protein variants V96L, A165T, M187 K, C246S, D247H, and M268I of mARC-1 and G244S and C245W of mARC-2 and N-reductive activity of 2SF, D14G, K16E, and T22A of cytochrome b5 type B were analyzed. Western blot analyses were consistent with the hypothesis that the mARC-containing N-reductive enzyme system might be involved in the reduction of SMX-HA. In agreement with these results, highest reduction rates were found in mitochondrial subcellular fractions of porcine tissue and in the outer membrane vesicle (OMV) of human liver tissue. Knockdown studies in HEK-293 cells demonstrated that mARC-1 and mARC-2 were capable of reducing SMX-HA in cell metabolism. Investigations with the heterologously expressed human mARC-2 protein showed a higher catalytic efficiency toward SMX-HA than mARC-1, but none of the investigated human protein variants showed statistically significant differences of its N-reductive activity and was therefore likely to participate in the pathogenesis of hypersensitivity reaction under treatment with SMX.

Collaboration


Dive into the Antje Havemeyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florian Bittner

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Debora Reichmann

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ralf R. Mendel

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge