Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antje K. Huebner is active.

Publication


Featured researches published by Antje K. Huebner.


Nature | 2015

Regulation of endoplasmic reticulum turnover by selective autophagy

Aliaksandr Khaminets; Theresa Heinrich; Muriel Mari; Paolo Grumati; Antje K. Huebner; Masato Akutsu; Lutz Liebmann; Alexandra Stolz; Sandor Nietzsche; Nicole Koch; Mario Mauthe; Istvan Katona; Britta Qualmann; Joachim Weis; Fulvio Reggiori; Ingo Kurth; Christian A. Hübner; Ivan Dikic

The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy (‘ER-phagy’). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.


Nature Genetics | 2009

Mutations in FAM134B , encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy

Ingo Kurth; Pamminger T; Hennings Jc; Soehendra D; Antje K. Huebner; Rotthier A; Jonathan Baets; Jan Senderek; Haluk Topaloglu; Farrell Sa; Gudrun Nürnberg; Peter Nürnberg; De Jonghe P; Andreas Gal; Kaether C; Timmerman; Christian A. Hübner

Hereditary sensory and autonomic neuropathy type II (HSAN II) leads to severe mutilations because of impaired nociception and autonomic dysfunction. Here we show that loss-of-function mutations in FAM134B, encoding a newly identified cis-Golgi protein, cause HSAN II. Fam134b knockdown results in structural alterations of the cis-Golgi compartment and induces apoptosis in some primary dorsal root ganglion neurons. This implicates FAM134B as critical in long-term survival of nociceptive and autonomic ganglion neurons.


Journal of Clinical Investigation | 2014

Disruption of vascular Ca2+-activated chloride currents lowers blood pressure

Christoph Heinze; Anika Seniuk; Maxim V. Sokolov; Antje K. Huebner; Agnieszka E. Klementowicz; István András Szijártó; Johanna Schleifenbaum; Helga Vitzthum; Maik Gollasch; Heimo Ehmke; Björn C. Schroeder; Christian A. Hübner

High blood pressure is the leading risk factor for death worldwide. One of the hallmarks is a rise of peripheral vascular resistance, which largely depends on arteriole tone. Ca2+-activated chloride currents (CaCCs) in vascular smooth muscle cells (VSMCs) are candidates for increasing vascular contractility. We analyzed the vascular tree and identified substantial CaCCs in VSMCs of the aorta and carotid arteries. CaCCs were small or absent in VSMCs of medium-sized vessels such as mesenteric arteries and larger retinal arterioles. In small vessels of the retina, brain, and skeletal muscle, where contractile intermediate cells or pericytes gradually replace VSMCs, CaCCs were particularly large. Targeted disruption of the calcium-activated chloride channel TMEM16A, also known as ANO1, in VSMCs, intermediate cells, and pericytes eliminated CaCCs in all vessels studied. Mice lacking vascular TMEM16A had lower systemic blood pressure and a decreased hypertensive response following vasoconstrictor treatment. There was no difference in contractility of medium-sized mesenteric arteries; however, responsiveness of the aorta and small retinal arterioles to the vasoconstriction-inducing drug U46619 was reduced. TMEM16A also was required for peripheral blood vessel contractility, as the response to U46619 was attenuated in isolated perfused hind limbs from mutant mice. Out data suggest that TMEM16A plays a general role in arteriolar and capillary blood flow and is a promising target for the treatment of hypertension.


Archives of Biochemistry and Biophysics | 2008

The role of calcitonin and α-calcitonin gene-related peptide in bone formation

Antje K. Huebner; Johannes Keller; Philip Catala-Lehnen; Sandra Perkovic; Thomas Streichert; Ronald B. Emeson; Michael Amling; Thorsten Schinke

The Calca gene encodes two polypeptides, calcitonin (CT) and alpha-calcitonin gene-related peptide (alpha-CGRP), generated through alternative splicing. While CT, a hormone mainly produced by thyroidal C cells, has been described as a major regulator of bone resorption, alpha-CGRP, a neuropeptide expressed in the cells of the central and peripheral nervous system, is mostly known as a regulator of vascular tone. Surprisingly, the generation and skeletal analyses of two mouse deficiency models has recently uncovered a physiological function for both peptides in the regulation of bone formation. In the first model, where the replacement of exons 2-5 of the Calca gene resulted in the combined deficiency of CT and alpha-CGRP, an increased bone formation rate (BFR) was observed, whereas decreased BFR was found in the second model, where the introduction of a translational termination codon into exon 5 of the Calca gene resulted in the specific absence of alpha-CGRP.


American Journal of Human Genetics | 2011

Nonsense Mutations in SMPX, Encoding a Protein Responsive to Physical Force, Result in X-Chromosomal Hearing Loss

Antje K. Huebner; Marta Gandía; Peter Frommolt; Anika Maak; Eva M. Wicklein; Holger Thiele; Janine Altmüller; Florian Wagner; Antonio Viñuela; Luis A. Aguirre; Felipe Moreno; Hannes Maier; Isabella Rau; Sebastian Gießelmann; Gudrun Nürnberg; Andreas Gal; Peter Nürnberg; Christian A. Hübner; Ignacio del Castillo; Ingo Kurth

The fact that hereditary hearing loss is the most common sensory disorder in humans is reflected by, among other things, an extraordinary allelic and nonallelic genetic heterogeneity. X-chromosomal hearing impairment represents only a minor fraction of all cases. In a study of a Spanish family the locus for one of the X-chromosomal forms was assigned to Xp22 (DFNX4). We mapped the disease locus in the same chromosomal region in a large German pedigree with X-chromosomal nonsyndromic hearing impairment by using genome-wide linkage analysis. Males presented with postlingual hearing loss and onset at ages 3-7, whereas onset in female carriers was in the second to third decades. Targeted DNA capture with high-throughput sequencing detected a nonsense mutation in the small muscle protein, X-linked (SMPX) of affected individuals. We identified another nonsense mutation in SMPX in patients from the Spanish family who were previously analyzed to map DFNX4. SMPX encodes an 88 amino acid, cytoskeleton-associated protein that is responsive to mechanical stress. The presence of Smpx in hair cells and supporting cells of the murine cochlea indicates its role in the inner ear. The nonsense mutations detected in the two families suggest a loss-of-function mechanism underlying this form of hearing impairment. Results obtained after heterologous overexpression of SMPX proteins were compatible with this assumption. Because responsivity to physical force is a characteristic feature of the protein, we propose that long-term maintenance of mechanically stressed inner-ear cells critically depends on SMPX function.


The EMBO Journal | 2013

Neuronal carbonic anhydrase VII provides GABAergic excitatory drive to exacerbate febrile seizures

Eva Ruusuvuori; Antje K. Huebner; Ilya Kirilkin; Alexey Y. Yukin; Peter Blaesse; Mohamed M. Helmy; Hyo Jung Kang; Malek El Muayed; J. Christopher Hennings; Juha Voipio; Nenad Sestan; Christian A. Hübner; Kai Kaila

Brain carbonic anhydrases (CAs) are known to modulate neuronal signalling. Using a novel CA VII (Car7) knockout (KO) mouse as well as a CA II (Car2) KO and a CA II/VII double KO, we show that mature hippocampal pyramidal neurons are endowed with two cytosolic isoforms. CA VII is predominantly expressed by neurons starting around postnatal day 10 (P10). The ubiquitous isoform II is expressed in neurons at P20. Both isoforms enhance bicarbonate‐driven GABAergic excitation during intense GABAA‐receptor activation. P13–14 CA VII KO mice show behavioural manifestations atypical of experimental febrile seizures (eFS) and a complete absence of electrographic seizures. A low dose of diazepam promotes eFS in P13–P14 rat pups, whereas seizures are blocked at higher concentrations that suppress breathing. Thus, the respiratory alkalosis‐dependent eFS are exacerbated by GABAergic excitation. We found that CA VII mRNA is expressed in the human cerebral cortex before the age when febrile seizures (FS) occur in children. Our data indicate that CA VII is a key molecule in age‐dependent neuronal pH regulation with consequent effects on generation of FS.


PLOS Genetics | 2013

A Hereditary Spastic Paraplegia Mouse Model Supports a Role of ZFYVE26/SPASTIZIN for the Endolysosomal System

Mukhran Khundadze; Katrin Kollmann; Nicole Koch; Christoph Biskup; Sandor Nietzsche; Geraldine Zimmer; J. Christopher Hennings; Antje K. Huebner; Judit Symmank; Amir Jahic; Elena I. Ilina; Kathrin N. Karle; Ludger Schöls; Michael M. Kessels; Thomas Braulke; Britta Qualmann; Ingo Kurth; Christian Beetz; Christian A. Hübner

Hereditary spastic paraplegias (HSPs) are characterized by progressive weakness and spasticity of the legs because of the degeneration of cortical motoneuron axons. SPG15 is a recessively inherited HSP variant caused by mutations in the ZFYVE26 gene and is additionally characterized by cerebellar ataxia, mental decline, and progressive thinning of the corpus callosum. ZFYVE26 encodes the FYVE domain-containing protein ZFYVE26/SPASTIZIN, which has been suggested to be associated with the newly discovered adaptor protein 5 (AP5) complex. We show that Zfyve26 is broadly expressed in neurons, associates with intracellular vesicles immunopositive for the early endosomal marker EEA1, and co-fractionates with a component of the AP5 complex. As the function of ZFYVE26 in neurons was largely unknown, we disrupted Zfyve26 in mice. Zfyve26 knockout mice do not show developmental defects but develop late-onset spastic paraplegia with cerebellar ataxia confirming that SPG15 is caused by ZFYVE26 deficiency. The morphological analysis reveals axon degeneration and progressive loss of both cortical motoneurons and Purkinje cells in the cerebellum. Importantly, neuron loss is preceded by accumulation of large intraneuronal deposits of membrane-surrounded material, which co-stains with the lysosomal marker Lamp1. A density gradient analysis of brain lysates shows an increase of Lamp1-positive membrane compartments with higher densities in Zfyve26 knockout mice. Increased levels of lysosomal enzymes in brains of aged knockout mice further support an alteration of the lysosomal compartment upon disruption of Zfyve26. We propose that SPG15 is caused by an endolysosomal membrane trafficking defect, which results in endolysosomal dysfunction. This appears to be particularly relevant in neurons with highly specialized neurites such as cortical motoneurons and Purkinje cells.


Embo Molecular Medicine | 2012

A mouse model for distal renal tubular acidosis reveals a previously unrecognized role of the V-ATPase a4 subunit in the proximal tubule

J. Christopher Hennings; Nicolas Picard; Antje K. Huebner; Tobias Stauber; Hannes Maier; Dennis Brown; Thomas J. Jentsch; Rosa Vargas‐Poussou; Dominique Eladari; Christian A. Hübner

The V‐ATPase is a multisubunit complex that transports protons across membranes. Mutations of its B1 or a4 subunit are associated with distal renal tubular acidosis and deafness. In the kidney, the a4 subunit is expressed in intercalated cells of the distal nephron, where the V‐ATPase controls acid/base secretion, and in proximal tubule cells, where its role is less clear. Here, we report that a4 KO mice suffer not only from severe acidosis but also from proximal tubule dysfunction with defective endocytic trafficking, proteinuria, phosphaturia and accumulation of lysosomal material and we provide evidence that these findings may be also relevant in patients. In the inner ear, the a4 subunit co‐localized with pendrin at the apical side of epithelial cells lining the endolymphatic sac. As a4 KO mice were profoundly deaf and displayed enlarged endolymphatic fluid compartments mirroring the alterations in pendrin KO mice, we propose that pendrin and the proton pump co‐operate in endolymph homeostasis. Thus, our mouse model gives new insights into the divergent functions of the V‐ATPase and the pathophysiology of a4‐related symptoms.


Journal of The American Society of Nephrology | 2017

The ClC-K2 Chloride Channel Is Critical for Salt Handling in the Distal Nephron.

J. Christopher Hennings; Olga Andrini; Nicolas Picard; Marc Paulais; Antje K. Huebner; Irma Karen Lopez Cayuqueo; Yohan Bignon; Mathilde Keck; Nicolas Cornière; Thomas J. Jentsch; Régine Chambrey; Jacques Teulon; Christian A. Hübner; Dominique Eladari

Chloride transport by the renal tubule is critical for blood pressure (BP), acid-base, and potassium homeostasis. Chloride uptake from the urinary fluid is mediated by various apical transporters, whereas basolateral chloride exit is thought to be mediated by ClC-Ka/K1 and ClC-Kb/K2, two chloride channels from the ClC family, or by KCl cotransporters from the SLC12 gene family. Nevertheless, the localization and role of ClC-K channels is not fully resolved. Because inactivating mutations in ClC-Kb/K2 cause Bartter syndrome, a disease that mimics the effects of the loop diuretic furosemide, ClC-Kb/K2 is assumed to have a critical role in salt handling by the thick ascending limb. To dissect the role of this channel in detail, we generated a mouse model with a targeted disruption of the murine ortholog ClC-K2. Mutant mice developed a Bartter syndrome phenotype, characterized by renal salt loss, marked hypokalemia, and metabolic alkalosis. Patch-clamp analysis of tubules isolated from knockout (KO) mice suggested that ClC-K2 is the main basolateral chloride channel in the thick ascending limb and in the aldosterone-sensitive distal nephron. Accordingly, ClC-K2 KO mice did not exhibit the natriuretic response to furosemide and exhibited a severely blunted response to thiazide. We conclude that ClC-Kb/K2 is critical for salt absorption not only by the thick ascending limb, but also by the distal convoluted tubule.


PLOS Genetics | 2015

In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

Rita-Eva Varga; Mukhran Khundadze; Markus Damme; Sandor Nietzsche; Birgit Hoffmann; Tobias Stauber; Nicole Koch; J. Christopher Hennings; Patricia Franzka; Antje K. Huebner; Michael M. Kessels; Christoph Biskup; Thomas J. Jentsch; Britta Qualmann; Thomas Braulke; Ingo Kurth; Christian Beetz; Christian A. Hübner

Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

Collaboration


Dive into the Antje K. Huebner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingo Kurth

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge