Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antje Munder is active.

Publication


Featured researches published by Antje Munder.


Nature | 2014

AhR sensing of bacterial pigments regulates antibacterial defence

Pedro Moura-Alves; Kellen C. Faé; Erica Houthuys; Anca Dorhoi; Annika Kreuchwig; Jens Furkert; Nicola Barison; Anne Diehl; Antje Munder; Patricia Constant; Tatsiana Skrahina; Ute Guhlich-Bornhof; Marion Klemm; Anne-Britta Koehler; Silke Bandermann; Christian Goosmann; Hans-Joachim Mollenkopf; Robert Hurwitz; Volker Brinkmann; Simon Fillatreau; Mamadou Daffé; Burkhard Tümmler; Michael Kolbe; Hartmut Oschkinat; Gerd Krause; Stefan H. E. Kaufmann

The aryl hydrocarbon receptor (AhR) is a highly conserved ligand-dependent transcription factor that senses environmental toxins and endogenous ligands, thereby inducing detoxifying enzymes and modulating immune cell differentiation and responses. We hypothesized that AhR evolved to sense not only environmental pollutants but also microbial insults. We characterized bacterial pigmented virulence factors, namely the phenazines from Pseudomonas aeruginosa and the naphthoquinone phthiocol from Mycobacterium tuberculosis, as ligands of AhR. Upon ligand binding, AhR activation leads to virulence factor degradation and regulated cytokine and chemokine production. The relevance of AhR to host defence is underlined by heightened susceptibility of AhR-deficient mice to both P. aeruginosa and M. tuberculosis. Thus, we demonstrate that AhR senses distinct bacterial virulence factors and controls antibacterial responses, supporting a previously unidentified role for AhR as an intracellular pattern recognition receptor, and identify bacterial pigments as a new class of pathogen-associated molecular patterns.


Journal of Bacteriology | 2010

Genome Diversity of Pseudomonas aeruginosa PAO1 Laboratory Strains

Jens Klockgether; Antje Munder; Jens Neugebauer; Colin F. Davenport; Frauke Stanke; Karen Larbig; Stephan Heeb; Ulrike Schöck; Thomas Pohl; Lutz Wiehlmann; Burkhard Tümmler

Pseudomonas aeruginosa PAO1 is the most commonly used strain for research on this ubiquitous and metabolically versatile opportunistic pathogen. Strain PAO1, a derivative of the original Australian PAO isolate, has been distributed worldwide to laboratories and strain collections. Over decades discordant phenotypes of PAO1 sublines have emerged. Taking the existing PAO1-UW genome sequence (named after the University of Washington, which led the sequencing project) as a blueprint, the genome sequences of reference strains MPAO1 and PAO1-DSM (stored at the German Collection for Microorganisms and Cell Cultures [DSMZ]) were resolved by physical mapping and deep short read sequencing-by-synthesis. MPAO1 has been the source of near-saturation libraries of transposon insertion mutants, and PAO1-DSM is identical in its SpeI-DpnI restriction map with the original isolate. The major genomic differences of MPAO1 and PAO1-DSM in comparison to PAO1-UW are the lack of a large inversion, a duplication of a mobile 12-kb prophage region carrying a distinct integrase and protein phosphatases or kinases, deletions of 3 to 1,006 bp in size, and at least 39 single-nucleotide substitutions, 17 of which affect protein sequences. The PAO1 sublines differed in their ability to cope with nutrient limitation and their virulence in an acute murine airway infection model. Subline PAO1-DSM outnumbered the two other sublines in late stationary growth phase. In conclusion, P. aeruginosa PAO1 shows an ongoing microevolution of genotype and phenotype that jeopardizes the reproducibility of research. High-throughput genome resequencing will resolve more cases and could become a proper quality control for strain collections.


PLOS Pathogens | 2009

Caenorhabditis elegans semi-automated liquid screen reveals a specialized role for the chemotaxis gene cheB2 in Pseudomonas aeruginosa virulence.

Steven Garvis; Antje Munder; Geneviève Ball; Sophie de Bentzmann; Lutz Wiehlmann; Jonathan J. Ewbank; Burkhard Tümmler; Alain Filloux

Pseudomonas aeruginosa is an opportunistic human pathogen that causes infections in a variety of animal and plant hosts. Caenorhabditis elegans is a simple model with which one can identify bacterial virulence genes. Previous studies with C. elegans have shown that depending on the growth medium, P. aeruginosa provokes different pathologies: slow or fast killing, lethal paralysis and red death. In this study, we developed a high-throughput semi-automated liquid-based assay such that an entire genome can readily be scanned for virulence genes in a short time period. We screened a 2,200-member STM mutant library generated in a cystic fibrosis airway P. aeruginosa isolate, TBCF10839. Twelve mutants were isolated each showing at least 70% attenuation in C. elegans killing. The selected mutants had insertions in regulatory genes, such as a histidine kinase sensor of two-component systems and a member of the AraC family, or in genes involved in adherence or chemotaxis. One mutant had an insertion in a cheB gene homologue, encoding a methylesterase involved in chemotaxis (CheB2). The cheB2 mutant was tested in a murine lung infection model and found to have a highly attenuated virulence. The cheB2 gene is part of the chemotactic gene cluster II, which was shown to be required for an optimal mobility in vitro. In P. aeruginosa, the main player in chemotaxis and mobility is the chemotactic gene cluster I, including cheB1. We show that, in contrast to the cheB2 mutant, a cheB1 mutant is not attenuated for virulence in C. elegans whereas in vitro motility and chemotaxis are severely impaired. We conclude that the virulence defect of the cheB2 mutant is not linked with a global motility defect but that instead the cheB2 gene is involved in a specific chemotactic response, which takes place during infection and is required for P. aeruginosa pathogenicity.


Environmental Microbiology | 2015

Interclonal gradient of virulence in the Pseudomonas aeruginosa pangenome from disease and environment

Rolf Hilker; Antje Munder; Jens Klockgether; Patricia Morán Losada; Philippe Chouvarine; Nina Cramer; Colin F. Davenport; Sarah Dethlefsen; Sebastian Fischer; Huiming Peng; Torben Schönfelder; Oliver Türk; Lutz Wiehlmann; Florian Wölbeling; Erich Gulbins; Alexander Goesmann; Burkhard Tümmler

The population genomics of Pseudomonas aeruginosa was analysed by genome sequencing of representative strains of the 15 most frequent clonal complexes in the P. aeruginosa population and of the five most common clones from the environment of which so far no isolate from a human infection has been detected. Gene annotation identified 5892-7187 open reading frame (ORFs; median 6381 ORFs) in the 20 6.4-7.4 Mbp large genomes. The P. aeruginosa pangenome consists of a conserved core of at least 4000 genes, a combinatorial accessory genome of a further 10 000 genes and 30 000 or more rare genes that are present in only a few strains or clonal complexes. Whole genome comparisons of single nucleotide polymorphism synteny indicated unrestricted gene flow between clonal complexes by recombination. Using standardized acute lettuce, Galleria mellonella and murine airway infection models the full spectrum of possible host responses to P. aeruginosa was observed with the 20 strains ranging from unimpaired health following infection to 100% lethality. Genome comparisons indicate that the differential genetic repertoire of clones maintains a habitat-independent gradient of virulence in the P. aeruginosa population.


Molecular Microbiology | 2009

Multiple roles of Pseudomonas aeruginosa TBCF10839 PilY1 in motility, transport and infection

Yu-Sing Tammy Bohn; Gudrun Brandes; Elza Rakhimova; Prabhakar Salunkhe; Antje Munder; Andrea van Barneveld; Doris Jordan; Florian Bredenbruch; Susanne Häußler; Kathrin Riedel; Leo Eberl; Peter Østrup Jensen; Thomas Bjarnsholt; Niels Høiby; Burkhard Tümmler; Lutz Wiehlmann

Polymorphonuclear neutrophils are the most important mammalian host defence cells against infections with Pseudomonas aeruginosa. Screening of a signature tagged mutagenesis library of the non‐piliated P. aeruginosa strain TBCF10839 uncovered that transposon inactivation of its pilY1 gene rendered the bacterium more resistant against killing by neutrophils than the wild type and any other of the more than 3000 tested mutants. Inactivation of pilY1 led to the loss of twitching motility in twitching‐proficient wild‐type PA14 and PAO1 strains, predisposed to autolysis and impaired the secretion of quinolones and pyocyanin, but on the other hand promoted growth in stationary phase and bacterial survival in murine airway infection models. The PilY1 population consisted of a major full‐length and a minor shorter PilY1* isoform. PilY1* was detectable in small extracellular quinolone‐positive aggregates, but not in the pilus. P. aeruginosa PilY1 is not an adhesin on the pilus tip, but assists in pilus biogenesis, twitching motility, secretion of secondary metabolites and in the control of cell density in the bacterial population.


PLOS ONE | 2008

Fitness of Isogenic Colony Morphology Variants of Pseudomonas aeruginosa in Murine Airway Infection

Elza Rakhimova; Antje Munder; Lutz Wiehlmann; Florian Bredenbruch; Burkhard Tümmler

Chronic lung infections with Pseudomonas aeruginosa are associated with the diversification of the persisting clone into niche specialists and morphotypes, a phenomenon called ‘dissociative behaviour’. To explore the potential of P. aeruginosa to change its morphotype by single step loss-of–function mutagenesis, a signature-tagged mini-Tn5 plasposon library of the cystic fibrosis airway isolate TBCF10839 was screened for colony morphology variants under nine different conditions in vitro. Transposon insertion into 1% of the genome changed colony morphology into eight discernable morphotypes. Half of the 55 targets encode features of primary or secondary metabolism whereby quinolone production was frequently affected. In the other half the transposon had inserted into genes of the functional categories transport, regulation or motility/chemotaxis. To mimic dissociative behaviour of isogenic strains in lungs, pools of 25 colony morphology variants were tested for competitive fitness in an acute murine airway infection model. Six of the 55 mutants either grew better or worse in vivo than in vitro, respectively. Metabolic proficiency of the colony morphology variant was a key determinant for survival in murine airways. The most common morphotype of self-destructive autolysis did unexpectedly not impair fitness. Transposon insertions into homologous genes of strain PAO1 did not reproduce the TBCF10839 mutant morphotypes for 16 of 19 examined loci pointing to an important role of the genetic background on colony morphology. Depending on the chosen P. aeruginosa strain, functional genome scans will explore other areas of the evolutionary landscape. Based on our discordant findings of mutant phenotypes in P. aeruginosa strains PAO1, PA14 and TBCF10839, we conclude that the current focus on few reference strains may miss modes of niche adaptation and dissociative behaviour that are relevant for the microevolution of complex traits in the wild.


PLOS ONE | 2012

A New Role of the Complement System: C3 Provides Protection in a Mouse Model of Lung Infection with Intracellular Chlamydia psittaci

Jenny Bode; Pavel Dutow; Kirsten Sommer; Katrin Janik; Silke Glage; Burkhard Tümmler; Antje Munder; Robert Laudeley; Konrad Sachse; Andreas Klos

The complement system modulates the intensity of innate and specific immunity. While it protects against infections by extracellular bacteria its role in infection with obligate intracellular bacteria, such as the avian and human pathogen Chlamydia (C.) psittaci, is still unknown. In the present study, knockout mice lacking C3 and thus all main complement effector functions were intranasally infected with C. psittaci strain DC15. Clinical parameters, lung histology, and cytokine levels were determined. A subset of infections was additionally performed with mice lacking C5 or C5a receptors. Complement activation occurred before symptoms of pneumonia appeared. Mice lacking C3 were ∼100 times more susceptible to the intracellular bacteria compared to wild-type mice, with all C3−/− mice succumbing to infection after day 9. At a low infective dose, C3−/− mice became severely ill after an even longer delay, the kinetics suggesting a so far unknown link of complement to the adaptive, protective immune response against chlamydiae. The lethal phenotype of C3−/− mice is not based on differences in the anti-chlamydial IgG response (which is slightly delayed) as demonstrated by serum transfer experiments. In addition, during the first week of infection, the absence of C3 was associated with partial protection characterized by reduced weight loss, better clinical score and lower bacterial burden, which might be explained by a different mechanism. Lack of complement functions downstream of C5 had little effect. This study demonstrates for the first time a strong and complex influence of complement effector functions, downstream of C3 and upstream of C5, on the outcome of an infection with intracellular bacteria, such as C. psittaci.


Immunobiology | 2011

Lung function and inflammation during murine Pseudomonas aeruginosa airway infection

Florian Wölbeling; Antje Munder; Tanja Kerber-Momot; Detlef Neumann; Christian Hennig; Gesine Hansen; Burkhard Tümmler; Ulrich Baumann

BACKGROUND Following any acute irritation lung function declines rapidly. Reasons for pulmonary deterioration in humans had been attributed to the action of either interleukin-6 or interleukin-8 in the lungs. OBJECTIVES The present study investigates the association between immune response and decline in lung function in a murine bacterial lung infection model. METHODS Upon intratracheal inoculation of C57BL/6J mice with a sublethal dose of Pseudomonas aeruginosa lung function, cytokine, chemokine and cytometry in bronchoalveolar lavage fluid, bacterial counts and lung histology was assessed at 2, 4, 6, 8, 10, 12, 18, 24, 48, 72, 96 and 120 h post inoculation. RESULTS Lung function measured by non-invasive head-out spirometry decreased most strongly between 6 and 10 h post inoculation and required up to 72 h to recover for selected parameters. CFU counts in the lungs peaked at 4h post inoculation with subsequent decline until at 24-48 h post inoculation background levels were reached. Cytokine and chemokine responses could be separated into an early pro-inflammatory phase (2-8h post inoculation; mainly tumor-necrosis factor α (TNFα) and interleukin-1α driven) and a late anti-inflammatory resolution phase (starting at 24h post inoculation; mainly interleukin-10 and interleukin-4 driven). Interleukin-6 levels correlated with the deterioration of lung function. Lung histology showed maximal changes in terms of inflammation and edema between 24 and 48 h post inoculation. CONCLUSIONS In summary, elevated interleukin-6, high local neutrophil counts and lung edema were found to be the most characteristic signs of the transient period of deterioration of lung function.


European Journal of Immunology | 2015

The histamine H4-receptor (H4R) regulates eosinophilic inflammation in ovalbumin-induced experimental allergic asthma in mice

Christina Hartwig; Antje Munder; Silke Glage; Dirk Wedekind; Heiko Schenk; Roland Seifert; Detlef Neumann

Via the histamine H4‐receptor (H4R), histamine promotes the pathogenesis of experimental allergic asthma in mice. Application of H4R antagonists during sensitization as well as during provocation reduces the severity of the disease. However, the specific cell types functionally expressing H4R in experimental allergic asthma have not been well characterized in vivo. In this study, we identified the cell type(s) responsible for H4R activity in experimental asthma and related physiological mechanisms. Using H4R‐deficient mice, we studied the role of H4R in the sensitization and effector phase. DCs lacking H4R expression during the in vitro sensitization reaction resulted in effector T cells unable to induce an entire eosinophilic inflammation in the lung upon adoptive transfer in vivo. Recipient mice lacking H4R expression, which were adoptively transferred with H4R+/+ T cells polarized in the presence of H4R+/+ DCs, showed reduced signs of inflammation and ameliorated lung function. Here, we provide in vivo evidence that in experimental asthma in mice the H4R specifically regulates activation of DCs during sensitization, while in the effector phase the H4R is active in cells involved in the activation of eosinophils, and possibly other cells. A putative therapy targeting the H4R may be an option for asthma patients developing IL‐5‐dependent eosinophilia.


Respiratory Research | 2011

Acute intratracheal Pseudomonas aeruginosa infection in cystic fibrosis mice is age-independent

Antje Munder; Florian Wölbeling; Tanja Kerber-Momot; Dirk Wedekind; Ulrich Baumann; Erich Gulbins; Burkhard Tümmler

BackgroundSince the discovery of the human CFTR gene in 1989 various mouse models for cystic fibrosis (CF) have been generated and used as a very suitable and popular tool to approach research on this life-threatening disease. Age related changes regarding the course of disease and susceptibility towards pulmonary infections have been discussed in numerous studies.MethodsHere, we investigated CftrTgH(neoim)Hgu and Cftrtm1Unc -Tg(FABPCFTR)1Jaw/J CF mice and their non-CF littermates during an acute lung infection with Pseudomonas aeruginosa for age dependent effects of their lung function and immune response.Mice younger than three or older than six months were intratracheally infected with P. aeruginosa TBCF10839. The infection was monitored by lung function of the animals using non-invasive head-out spirometry and the time course of physiological parameters over 192 hours. Quantitative bacteriology and lung histopathology of a subgroup of animals were used as endpoint parameters.ResultsAge-dependent changes in lung function and characteristic features for CF like a shallower, faster breathing pattern were observed in both CF mouse models in uninfected state. In contrast infected CF mice did not significantly differ from their non-CF littermates in susceptibility and severity of lung infection in both mouse models and age groups. The transgenic Cftrtm1Unc -Tg(FABPCFTR)1Jaw/J and their non-CF littermates showed a milder course of infection than the CftrTgH(neoim)Hgu CF and their congenic C57Bl/6J non-CF mice suggesting that the genetic background was more important for outcome than Cftr dysfunction.ConclusionsPrevious investigations of the same mouse lines have shown a higher airway susceptibility of older CF mice to intranasally applied P. aeruginosa. The different outcome of intranasal and intratracheal instillation of bacteria implies that infected CF epithelium is impaired during the initial colonization of upper airways, but not in the subsequent response of host defense.

Collaboration


Dive into the Antje Munder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge