Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antje Rohde is active.

Publication


Featured researches published by Antje Rohde.


Plant Physiology | 2003

Genome-Wide Characterization of the Lignification Toolbox in Arabidopsis

Jeroen Raes; Antje Rohde; Jørgen Holst Christensen; Yves Van de Peer; Wout Boerjan

Lignin, one of the most abundant terrestrial biopolymers, is indispensable for plant structure and defense. With the availability of the full genome sequence, large collections of insertion mutants, and functional genomics tools, Arabidopsis constitutes an excellent model system to profoundly unravel the monolignol biosynthetic pathway. In a genome-wide bioinformatics survey of the Arabidopsis genome, 34 candidate genes were annotated that encode genes homologous to the 10 presently known enzymes of the monolignol biosynthesis pathway, nine of which have not been described before. By combining evolutionary analysis of these 10 gene families with in silico promoter analysis and expression data (from a reverse transcription-polymerase chain reaction analysis on an extensive tissue panel, mining of expressed sequence tags from publicly available resources, and assembling expression data from literature), 12 genes could be pinpointed as the most likely candidates for a role in vascular lignification. Furthermore, a possible novel link was detected between the presence of the AC regulatory promoter element and the biosynthesis of G lignin during vascular development. Together, these data describe the full complement of monolignol biosynthesis genes in Arabidopsis, provide a unified nomenclature, and serve as a basis for further functional studies.


The Plant Cell | 2007

A Molecular Timetable for Apical Bud Formation and Dormancy Induction in Poplar

Tom Ruttink; Matthias Arend; Kris Morreel; Veronique Storme; Stephane Rombauts; Jörg Fromm; Rishikesh P. Bhalerao; Wout Boerjan; Antje Rohde

The growth of perennial plants in the temperate zone alternates with periods of dormancy that are typically initiated during bud development in autumn. In a systems biology approach to unravel the underlying molecular program of apical bud development in poplar (Populus tremula × Populus alba), combined transcript and metabolite profiling were applied to a high-resolution time course from short-day induction to complete dormancy. Metabolite and gene expression dynamics were used to reconstruct the temporal sequence of events during bud development. Importantly, bud development could be dissected into bud formation, acclimation to dehydration and cold, and dormancy. To each of these processes, specific sets of regulatory and marker genes and metabolites are associated and provide a reference frame for future functional studies. Light, ethylene, and abscisic acid signal transduction pathways consecutively control bud development by setting, modifying, or terminating these processes. Ethylene signal transduction is positioned temporally between light and abscisic acid signals and is putatively activated by transiently low hexose pools. The timing and place of cell proliferation arrest (related to dormancy) and of the accumulation of storage compounds (related to acclimation processes) were established within the bud by electron microscopy. Finally, the identification of a large set of genes commonly expressed during the growth-to-dormancy transitions in poplar apical buds, cambium, or Arabidopsis thaliana seeds suggests parallels in the underlying molecular mechanisms in different plant organs.


The Plant Cell | 2004

Molecular Phenotyping of the pal1 and pal2 Mutants of Arabidopsis thaliana Reveals Far-Reaching Consequences on Phenylpropanoid, Amino Acid, and Carbohydrate Metabolism

Antje Rohde; Kris Morreel; John Ralph; Geert Goeminne; Vanessa Hostyn; Riet De Rycke; Sergej Kushnir; Jan Van Doorsselaere; Jean-Paul Joseleau; Marnik Vuylsteke; Gonzalez Van Driessche; Jozef Van Beeumen; Eric Messens; Wout Boerjan

The first enzyme of the phenylpropanoid pathway, Phe ammonia-lyase (PAL), is encoded by four genes in Arabidopsis thaliana. Whereas PAL function is well established in various plants, an insight into the functional significance of individual gene family members is lacking. We show that in the absence of clear phenotypic alterations in the Arabidopsis pal1 and pal2 single mutants and with limited phenotypic alterations in the pal1 pal2 double mutant, significant modifications occur in the transcriptome and metabolome of the pal mutants. The disruption of PAL led to transcriptomic adaptation of components of the phenylpropanoid biosynthesis, carbohydrate metabolism, and amino acid metabolism, revealing complex interactions at the level of gene expression between these pathways. Corresponding biochemical changes included a decrease in the three major flavonol glycosides, glycosylated vanillic acid, scopolin, and two novel feruloyl malates coupled to coniferyl alcohol. Moreover, Phe overaccumulated in the double mutant, and the levels of many other amino acids were significantly imbalanced. The lignin content was significantly reduced, and the syringyl/guaiacyl ratio of lignin monomers had increased. Together, from the molecular phenotype, common and specific functions of PAL1 and PAL2 are delineated, and PAL1 is qualified as being more important for the generation of phenylpropanoids.


Nature Genetics | 2008

Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana

Siegbert Melzer; Frederic Lens; Jerôme Gennen; Steffen Vanneste; Antje Rohde; Tom Beeckman

Plants have evolved annual and perennial life forms as alternative strategies to adapt reproduction and survival to environmental constraints. In isolated situations, such as islands, woody perennials have evolved repeatedly from annual ancestors. Although the molecular basis of the rapid evolution of insular woodiness is unknown, the molecular difference between perennials and annuals might be rather small, and a change between these life strategies might not require major genetic innovations. Developmental regulators can strongly affect evolutionary variation and genes involved in meristem transitions are good candidates for a switch in growth habit. We found that the MADS box proteins SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FRUITFULL (FUL) not only control flowering time, but also affect determinacy of all meristems. In addition, downregulation of both proteins established phenotypes common to the lifestyle of perennial plants, suggesting their involvement in the prevention of secondary growth and longevity in annual life forms.


The Plant Cell | 2002

PtABI3 Impinges on the Growth and Differentiation of Embryonic Leaves during Bud Set in Poplar

Antje Rohde; Els Prinsen; Riet De Rycke; Gilbert Engler; Marc Van Montagu; Wout Boerjan

The Arabidopsis ABSCISIC ACID–INSENSITIVE3 (ABI3) protein plays a crucial role during late seed development and has an additional function at the vegetative meristem, particularly during periods of growth-arresting conditions and quiescence. Here, we show that the ABI3 homolog of poplar (PtABI3) is expressed in buds during natural bud set. Expression occurs clearly after perception of the critical daylength that initiates bud set and dormancy in poplar. In short-day conditions mimicking natural bud set, the expression of a chimeric PtABI3::β-glucuronidase (GUS) gene occurred in those organs and cells of the apex that grow actively but will undergo arrest: the young embryonic leaves, the subapical meristem, and the procambial strands. If PtABI3 is overexpressed or downregulated, bud development in short-day conditions is altered. Constitutive overexpression of PtABI3 resulted in apical buds with large embryonic leaves and small stipules, whereas in antisense lines, bud scales were large and leaves were small. Thus, PtABI3 influences the size and ratio of embryonic leaves and bud scales/stipules that differentiate from the primordia under short-day conditions. These observations, together with the expression of PtABI3::GUS in embryonic leaves but not in bud scales/stipules, support the idea that wild-type PtABI3 is required for the relative growth rate and differentiation of embryonic leaves inside the bud. These experiments reveal that ABI3 plays a role in the cellular differentiation of vegetative tissues, in addition to its function in seeds.


The Plant Cell | 2012

A Systems Biology View of Responses to Lignin Biosynthesis Perturbations in Arabidopsis

Ruben Vanholme; Veronique Storme; Bartel Vanholme; Lisa Sundin; Jørgen Holst Christensen; Geert Goeminne; Claire Halpin; Antje Rohde; Kris Morreel; Wout Boerjan

The combination of metabolomics and transcriptomics on Arabidopsis thaliana lines mutated in 10 steps of the lignin pathway provides insight into monolignol biosynthesis and the metabolic network in which it is embedded. In addition, this work reveals novel pathways and genes associated with lignin biosynthesis. Lignin engineering is an attractive strategy to improve lignocellulosic biomass quality for processing to biofuels and other bio-based products. However, lignin engineering also results in profound metabolic consequences in the plant. We used a systems biology approach to study the plant’s response to lignin perturbations. To this end, inflorescence stems of 20 Arabidopsis thaliana mutants, each mutated in a single gene of the lignin biosynthetic pathway (phenylalanine ammonia-lyase1 [PAL1], PAL2, cinnamate 4-hydroxylase [C4H], 4-coumarate:CoA ligase1 [4CL1], 4CL2, caffeoyl-CoA O-methyltransferase1 [CCoAOMT1], cinnamoyl-CoA reductase1 [CCR1], ferulate 5-hydroxylase [F5H1], caffeic acid O-methyltransferase [COMT], and cinnamyl alcohol dehydrogenase6 [CAD6], two mutant alleles each), were analyzed by transcriptomics and metabolomics. A total of 566 compounds were detected, of which 187 could be tentatively identified based on mass spectrometry fragmentation and many were new for Arabidopsis. Up to 675 genes were differentially expressed in mutants that did not have any obvious visible phenotypes. Comparing the responses of all mutants indicated that c4h, 4cl1, ccoaomt1, and ccr1, mutants that produced less lignin, upregulated the shikimate, methyl-donor, and phenylpropanoid pathways (i.e., the pathways supplying the monolignols). By contrast, f5h1 and comt, mutants that provoked lignin compositional shifts, downregulated the very same pathways. Reductions in the flux to lignin were associated with the accumulation of various classes of 4-O- and 9-O-hexosylated phenylpropanoids. By combining metabolomic and transcriptomic data in a correlation network, system-wide consequences of the perturbations were revealed and genes with a putative role in phenolic metabolism were identified. Together, our data provide insight into lignin biosynthesis and the metabolic network it is embedded in and provide a systems view of the plant’s response to pathway perturbations.


Plant Physiology | 2010

Circadian Clock Components Regulate Entry and Affect Exit of Seasonal Dormancy as Well as Winter Hardiness in Populus Trees

Cristian Ibáñez; Iwanka Kozarewa; Mikael Johansson; Erling Ögren; Antje Rohde; Maria Eriksson

This study addresses the role of the circadian clock in the seasonal growth cycle of trees: growth cessation, bud set, freezing tolerance, and bud burst. Populus tremula × Populus tremuloides (Ptt) LATE ELONGATED HYPOCOTYL1 (PttLHY1), PttLHY2, and TIMING OF CAB EXPRESSION1 constitute regulatory clock components because down-regulation by RNA interference of these genes leads to altered phase and period of clock-controlled gene expression as compared to the wild type. Also, both RNA interference lines show about 1-h-shorter critical daylength for growth cessation as compared to the wild type, extending their period of growth. During winter dormancy, when the diurnal variation in clock gene expression stops altogether, down-regulation of PttLHY1 and PttLHY2 expression compromises freezing tolerance and the expression of C-REPEAT BINDING FACTOR1, suggesting a role of these genes in cold hardiness. Moreover, down-regulation of PttLHY1 and PttLHY2 causes a delay in bud burst. This evidence shows that in addition to a role in daylength-controlled processes, PttLHY plays a role in the temperature-dependent processes of dormancy in Populus such as cold hardiness and bud burst.


Tree Physiology | 2011

Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar

Antje Rohde; Catherine Bastien; Wout Boerjan

Bud set, the cornerstone delimiting the seasonal growth period in trees, is the dynamic net result of the often photoperiod-controlled growth cessation and the subsequent bud formation. Here, we show that in hybrid poplar, the critical day length for growth cessation and the duration of bud formation each vary with local climatic conditions in identical genotypes. The detailed dissection of bud set suggests temperature as one additional environmental factor that modifies the sensitivity to day-length signals at growth cessation and influences the duration of bud formation in poplar. The ability of perennial plants to integrate additional environmental signals with photoperiod signaling may add to short-term acclimatization to the predicted longer growing seasons in future climates.


The Plant Cell | 2000

ABI3 Affects Plastid Differentiation in Dark-Grown Arabidopsis Seedlings

Antje Rohde; Riet De Rycke; Tom Beeckman; Gilbert Engler; Marc Van Montagu; Wout Boerjan

The Arabidopsis ABSCISIC ACID–INSENSITIVE3 (ABI3) protein has been identified previously as a crucial regulator of late seed development. Here, we show that dark-grown abi3 plants, or abi3 plants returned to the dark after germination in the light, developed and maintained an etioplast with a prominent prolamellar body at developmental stages in which the wild type did not. Overexpression of ABI3 led to the preservation of the plastid ultrastructure that was present at the onset of darkness. These observations suggest that ABI3 plays a role in plastid differentiation pathways in vegetative tissues. Furthermore, the analysis of deetiolated (det1) abi3 double mutants revealed that DET1 and ABI3 impinge on a multitude of common processes. During seed maturation, ABI3 required DET1 to achieve its full expression. Mature det1 abi3 seeds were found to be in a highly germinative state, indicating that germination is controlled by both DET1 and ABI3. During plastid differentiation in leaves of dark-grown plants, DET1 is required for the action of ABI3 as it is during seed development. Together, the results suggest that ABI3 is at least partly regulated by light.


Plant Journal | 2010

Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis

Ruben Vanholme; John Ralph; Takuya Akiyama; Fachuang Lu; Jorge Rencoret Pazo; Hoon Kim; Jørgen Holst Christensen; Brecht Van Reusel; Veronique Storme; Riet De Rycke; Antje Rohde; Kris Morreel; Wout Boerjan

Lignin engineering is a promising strategy to optimize lignocellulosic plant biomass for use as a renewable feedstock for agro-industrial applications. Current efforts focus on engineering lignin with monomers that are not normally incorporated into wild-type lignins. Here we describe an Arabidopsis line in which the lignin is derived to a major extent from a non-traditional monomer. The combination of mutation in the gene encoding caffeic acid O-methyltransferase (comt) with over-expression of ferulate 5-hydroxylase under the control of the cinnamate 4-hydroxylase promoter (C4H:F5H1) resulted in plants with a unique lignin comprising almost 92% benzodioxane units. In addition to biosynthesis of this particular lignin, the comt C4H:F5H1 plants revealed massive shifts in phenolic metabolism compared to the wild type. The structures of 38 metabolites that accumulated in comt C4H:F51 plants were resolved by mass spectral analyses, and were shown to derive from 5-hydroxy-substituted phenylpropanoids. These metabolites probably originate from passive metabolism via existing biochemical routes normally used for 5-methoxylated and 5-unsubstituted phenylpropanoids and from active detoxification by hexosylation. Transcripts of the phenylpropanoid biosynthesis pathway were highly up-regulated in comt C4H:F5H1 plants, indicating feedback regulation within the pathway. To investigate the role of flavonoids in the abnormal growth of comt C4H:F5H1 plants, a mutation in a gene encoding chalcone synthase (chs) was crossed in. The resulting comt C4H:F5H1 chs plants showed partial restoration of growth. However, a causal connection between flavonoid deficiency and this restoration of growth was not demonstrated; instead, genetic interactions between phenylpropanoid and flavonoid biosynthesis could explain the partial restoration. These genetic interactions must be taken into account in future cell-wall engineering strategies.

Collaboration


Dive into the Antje Rohde's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge