Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antje von Schaewen is active.

Publication


Featured researches published by Antje von Schaewen.


Current Opinion in Plant Biology | 2003

The oxidative pentose phosphate pathway: structure and organisation

Nicholas J. Kruger; Antje von Schaewen

The oxidative pentose phosphate pathway is a major source of reducing power and metabolic intermediates for biosynthetic processes. Some, if not all, of the enzymes of the pathway are found in both the cytosol and plastids, although the precise distribution of their activities varies. The apparent absence of sections of the pathway from the cytosol potentially complicates metabolism. These complications are partly offset, however, by exchange of intermediates between the cytosol and the plastids through the activities of a family of plastid phosphate translocators. Molecular analysis is confirming the widespread presence of multiple genes encoding each of the enzymes of the oxidative pentose phosphate pathway. Differential expression of these isozymes may ensure that the kinetic properties of the activity that catalyses a specific reaction match the metabolic requirements of a particular tissue. This hypothesis can be tested thanks to recent developments in the application of 13C-steady-state labelling strategies. These strategies make it possible to quantify flux through metabolic networks and to discriminate between pathways of carbohydrate oxidation in the cytosol and plastids.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus

Jae Sook Kang; Julia Frank; Chang Ho Kang; Hiroyuki Kajiura; Meenu Vikram; Akihiro Ueda; Sewon Kim; Jeong Dong Bahk; Barbara Triplett; Kazuhito Fujiyama; Sang Yeol Lee; Antje von Schaewen; Hisashi Koiwa

Protein N-glycosylation in the endoplasmic reticulum (ER) and in the Golgi apparatus is an essential process in eukaryotic cells. Although the N-glycosylation pathway in the ER has been shown to regulate protein quality control, salt tolerance, and cellulose biosynthesis in plants, no biological roles have been linked functionally to N-glycan modifications that occur in the Golgi apparatus. Herein, we provide evidence that mutants defective in N-glycan maturation, such as complex glycan 1 (cgl1), are more salt-sensitive than wild type. Salt stress caused growth inhibition, aberrant root-tip morphology, and callose accumulation in cgl1, which were also observed in an ER oligosaccharyltransferase mutant, staurosporin and temperature sensitive 3a (stt3a). Unlike stt3a, cgl1 did not cause constitutive activation of the unfolded protein response. Instead, aberrant modification of the plasma membrane glycoprotein KORRIGAN 1/RADIALLY SWOLLEN 2 (KOR1/RSW2) that is necessary for cellulose biosynthesis occurred in cgl1 and stt3a. Genetic analyses identified specific interactions among rsw2, stt3a, and cgl1 mutations, indicating that the function of KOR1/RSW2 protein depends on complex N-glycans. Furthermore, cellulose deficient rsw1-1 and rsw2-1 plants were also salt-sensitive. These results establish that plant protein N-glycosylation functions beyond protein folding in the ER and is necessary for sufficient cell-wall formation under salt stress.


Journal of Biological Chemistry | 2010

Pattern recognition receptors require N-glycosylation to mediate plant immunity

Heidrun Häweker; Stephan Rips; Hisashi Koiwa; Susanne Salomon; Yusuke Saijo; Delphine Chinchilla; Silke Robatzek; Antje von Schaewen

N-Glycans attached to the ectodomains of plasma membrane pattern recognition receptors constitute likely initial contact sites between plant cells and invading pathogens. To assess the role of N-glycans in receptor-mediated immune responses, we investigated the functionality of Arabidopsis receptor kinases EFR and FLS2, sensing bacterial translation elongation factor Tu (elf18) and flagellin (flg22), respectively, in N-glycosylation mutants. As revealed by binding and responses to elf18 or flg22, both receptors tolerated immature N-glycans induced by mutations in various Golgi modification steps. EFR was specifically impaired by loss-of-function mutations in STT3A, a subunit of the endoplasmic reticulum resident oligosaccharyltransferase complex. FLS2 tolerated mild underglycosylation occurring in stt3a but was sensitive to severe underglycosylation induced by tunicamycin treatment. EFR accumulation was significantly reduced when synthesized without N-glycans but to lesser extent when underglycosylated in stt3a or mutated in single amino acid positions. Interestingly, EFRN143Q lacking a single conserved N-glycosylation site from the EFR ectodomain accumulated to reduced levels and lost the ability to bind its ligand and to mediate elf18-elicited oxidative burst. However, EFR-YFP protein localization and peptide:N-glycosidase F digestion assays support that both EFR produced in stt3a and EFRN143Q in wild type cells correctly targeted to the plasma membrane via the Golgi apparatus. These results indicate that a single N-glycan plays a critical role for receptor abundance and ligand recognition during plant-pathogen interactions at the cell surface.


Journal of Biological Chemistry | 1997

Identification of the Cysteine Residues Involved in Redox Modification of Plant Plastidic Glucose-6-phosphate Dehydrogenase

Irina Wenderoth; Renate Scheibe; Antje von Schaewen

The cDNA sequences encoding cytosolic and light-modulated plastidic glucose-6-phosphate dehydrogenase (G6PDH) from potato were modified by polymerase chain reaction and subsequently overexpressed in Escherichia coli. Characterization of the recombinant enzymes showed that they closely resembled their native counterparts. Treatment with reduced dithiothreitol or glutathione led to inactivation of plastidic G6PDH, whereas the activity of the cytosolic isoenzyme was not influenced by reduction. As for the native enzyme, inactivation of recombinant plastidic G6PDH was accelerated by thioredoxin m and could be fully reversed by subsequent addition of oxidant. To identify the residues which are involved in redox regulation of plastidic G6PDH, each of the six cysteines in the mature protein sequence was exchanged separately for serine by site-directed mutagenesis. Two mutant proteins exhibited characteristics of the reduced wild-type enzyme. Exchange of either Cys149 or Cys157 to serine abolished the regulatory properties, suggesting that these cysteine residues are the sites responsible for redox-mediated inactivation of plastidic G6PDH.


Plant Physiology | 2003

Differential Regulation of Glucose-6-Phosphate Dehydrogenase Isoenzyme Activities in Potato

Rüdiger Hauschild; Antje von Schaewen

In plants, Glc-6-phosphate dehydrogenase (G6PDH) isoenzymes are present in the cytosol and in plastids. The plastidic enzymes (P1 and P2) are subject to redox regulation, but mechanisms that adjust cytosolic G6PDH activity are largely unknown. We adopted a leaf disc system for monitoring the effects of various conditions on G6PD isoform expression and enzyme activities in potato (Solanum tuberosum). Cytosolic G6PDH activity remained constant during water incubation in the dark. In continuous light or in the presence of metabolizable sugars in the dark, cytosolic G6PDH activity increased 6-fold within 24 h. Cycloheximide incubation demonstrated that enhanced cytosolic G6PDH activity depends on de novo protein synthesis. Osmotic change, phosphate sequestration, or oxidative stress did not affect cytosolic G6PDH activity. Furthermore, enzyme activity and protein contents closely followed the corresponding mRNA levels. Together with the fact that multiple SURE elements are present in the promoter region of the gene, these results suggest that cytosolic G6PDH activity is regulated by sugar availability at the transcriptional level. Plastidic G6PDH activity stayed constant during water incubation in the light and dropped to minimal levels within 6 h in the dark. Conversely, plastidic G6PDH activity of leaf discs incubated on Paraquat rose to 10-fold higher levels, which was not prevented by cycloheximide. Similar increases were found with nitrite, nitrate, or sulfate. No major changes in protein or mRNA contents of the plastidic P1 and P2 isoforms were registered. Km (Glc-6-phosphate) values of plastidic G6PDH activity differed between samples incubated on water or Paraquat, suggesting posttranslational modification of the plastidic enzyme(s). Immunoprecipitation of 32P-labeled samples with P1 isoform-specific antibodies showed that the chloroplast enzyme is subject to protein phosphorylation. Obviously, in extended dark periods, G6PDH activity in the stroma is restricted but can be stimulated in response to high demands for NADPH.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Isoenzyme replacement of glucose-6-phosphate dehydrogenase in the cytosol improves stress tolerance in plants

Judith Scharte; Hardy Schön; Zeina Tjaden; Engelbert Weis; Antje von Schaewen

In source leaves of resistant tobacco, oxidative burst and subsequent formation of hypersensitive lesions after infection with Phytophthora nicotianae was prevented by inhibition of glucose-6-phosphate dehydrogenase (G6PDH) or NADPH oxidases. This observation indicated that plant defense could benefit from improved NADPH availability due to increased G6PDH activity in the cytosol. A plastidic isoform of the G6PDH-encoding gene, G6PD, displaying high NADPH tolerance was engineered for cytosolic expression (cP2), and introduced into a susceptible cultivar. After infection, transgenic (previously susceptible) lines overexpressing cP2 showed early oxidative bursts, callose deposition, and changes in metabolic parameters. These responses resulted in timely formation of hypersensitive lesions similar to resistant plants, although their extent varied considerably between different transgenic lines. Additional RNAi suppression of endogenous cytosolic G6PD isoforms resulted in highly uniform defense responses and also enhanced drought tolerance and flowering. Cytosolic G6PDH seems to be a crucial factor for the outcome of plant defense responses; thus, representing an important target for modulation of stress resistance. Because isoenzyme replacement of G6PDH in the cytosol was beneficial under various kinds of cues, we propose this strategy as a tool to enhance stress tolerance in general.


Plant Physiology | 2003

Decreased Content of Leaf Ferredoxin Changes Electron Distribution and Limits Photosynthesis in Transgenic Potato Plants

Simone Holtgrefe; Klaus P. Bader; Peter Horton; Renate Scheibe; Antje von Schaewen; Jan E. Backhausen

A complete ferredoxin (Fd) cDNA clone was isolated from potato (Solanum tuberosum L. cv Desiree) leaves. By molecular and immunoblot analysis, the gene was identified as the leaf-specific Fd isoform I. Transgenic potato plants were constructed by introducing the homologous potato fed 1 cDNA clone as an antisense construct under the control of the constitutive cauliflower mosaic virus 35S promoter. Stable antisense lines with Fd contents between 40% and 80% of the wild-type level were selected by northern- and western-blot analysis. In short-term experiments, the distribution of electrons toward their stromal acceptors was altered in the mutant plants. Cyclic electron transport, as determined by the quantum yields of photosystems I and II, was enhanced. The CO2 assimilation rate was decreased, but depending on the remaining Fd content, some lines showed photoinhibition. The leaf protein content remained largely constant, but the antisense plants had a lower total chlorophyll content per unit leaf area and an increased chlorophyll a/b ratio. In the antisense plants, the redox state of the quinone acceptor A in photosystem II (QA) was more reduced than that of the wild-type plants under all experimental conditions. Because the plants with lower Fd amounts reacted as if they were grown under a higher light intensity, the possibility that the altered chloroplast redox state affects light acclimation is discussed.


Plant Journal | 2011

Alternative targeting of Arabidopsis plastidic glucose‐6‐phosphate dehydrogenase G6PD1 involves cysteine‐dependent interaction with G6PD4 in the cytosol

Tanja Meyer; Christian Hölscher; Christian Schwöppe; Antje von Schaewen

Arabidopsis peroxisomes contain an incomplete oxidative pentose-phosphate pathway (OPPP), consisting of 6-phosphogluconolactonase and 6-phosphogluconate dehydrogenase isoforms with peroxisomal targeting signals (PTS). To start the pathway, glucose-6-phosphate dehydrogenase (G6PD) is required; however, G6PD isoforms with obvious C-terminal PTS1 or N-terminal PTS2 motifs are lacking. We used fluorescent reporter fusions to explore possibly hidden peroxisomal targeting information. Among the six Arabidopsis G6PD isoforms only plastid-predicted G6PD1 with free C-terminal end localized to peroxisomes. Detailed analyses identified SKY as an internal PTS1-like signal; however, in a medial G6PD1 reporter fusion with free N- and C-terminal ends this cryptic information was overruled by the transit peptide. Yeast two-hybrid analyses revealed selective protein-protein interactions of G6PD1 with catalytically inactive G6PD4, and of both G6PD isoforms with plastid-destined thioredoxin m2 (Trx(m2) ). Serine replacement of redox-sensitive cysteines conserved in G6PD4 abolished the G6PD4-G6PD1 interaction, albeit analogous changes in G6PD1 did not. In planta bimolecular fluorescence complementation (BiFC) demonstrated that the G6PD4-G6PD1 interaction results in peroxisomal import. BiFC also confirmed the interaction of Trx(m2) with G6PD4 (or G6PD1) in plastids, but co-expression analyses revealed Trx(m2) -mediated retention of medial G6PD4 (but not G6PD1) reporter fusions in the cytosol that was stabilized by CxxC¹¹³S exchange in Trx(m2) . Based on preliminary findings with plastid-predicted rice G6PD isoforms, we dismiss Arabidopsis G6PD4 as non-functional. G6PD4 orthologs (new P0 class) apparently evolved to become cytosolic redox switches that confer thioredoxin-relayed alternative targeting to peroxisomes.


Plant Physiology | 2011

Regulatory Subunit B′γ of Protein Phosphatase 2A Prevents Unnecessary Defense Reactions under Low Light in Arabidopsis

Andrea Trotta; Michael Wrzaczek; Judith Scharte; Mikko Tikkanen; Grzegorz Konert; Moona Rahikainen; Maija Holmström; Hanna-Maija Hiltunen; Stephan Rips; Nina Sipari; Paula Mulo; Engelbert Weis; Antje von Schaewen; Eva-Mari Aro; Saijaliisa Kangasjärvi

Light is an important environmental factor that modulates acclimation strategies and defense responses in plants. We explored the functional role of the regulatory subunit B′γ (B′γ) of protein phosphatase 2A (PP2A) in light-dependent stress responses of Arabidopsis (Arabidopsis thaliana). The predominant form of PP2A consists of catalytic subunit C, scaffold subunit A, and highly variable regulatory subunit B, which determines the substrate specificity of PP2A holoenzymes. Mutant leaves of knockdown pp2a-b′γ plants show disintegration of chloroplasts and premature yellowing conditionally under moderate light intensity. The cell-death phenotype is accompanied by the accumulation of hydrogen peroxide through a pathway that requires CONSTITUTIVE EXPRESSION OF PR GENES5 (CPR5). Moreover, the pp2a-b′γ cpr5 double mutant additionally displays growth suppression and malformed trichomes. Similar to cpr5, the pp2a-b′γ mutant shows constitutive activation of both salicylic acid- and jasmonic acid-dependent defense pathways. In contrast to cpr5, however, pp2a-b′γ leaves do not contain increased levels of salicylic acid or jasmonic acid. Rather, the constitutive defense response associates with hypomethylation of DNA and increased levels of methionine-salvage pathway components in pp2a-b′γ leaves. We suggest that the specific B′γ subunit of PP2A is functionally connected to CPR5 and operates in the basal repression of defense responses under low irradiance.


Plant Physiology | 2008

Comparative Analyses of Arabidopsis complex glycan1 Mutants and Genetic Interaction with staurosporin and temperature sensitive3a

Julia Frank; Heidi Kaulfürst-Soboll; Stephan Rips; Hisashi Koiwa; Antje von Schaewen

We compare three Arabidopsis (Arabidopsis thaliana) complex glycan1 (cgl1) alleles and report on genetic interaction with staurosporin and temperature sensitive3a (stt3a). STT3a encodes a subunit of oligosaccharyltransferase that affects efficiency of N-glycan transfer to nascent secretory proteins in the endoplasmic reticulum; cgl1 mutants lack N-acetyl-glucosaminyltransferase I activity and are unable to form complex N-glycans in the Golgi apparatus. By studying CGL1-green fluorescent protein fusions in transient assays, we show that the extra N-glycosylation site created by a point mutation in cgl1 C5 is used in planta and interferes with folding of full-length membrane-anchored polypeptides in the endoplasmic reticulum. Tunicamycin treatment or expression in the stt3a-2 mutant relieved the folding block, and migration to Golgi stacks resumed. Complementation tests with C5-green fluorescent protein and other N-glycosylation variants of CGL1 demonstrated that suppression of aberrant N-glycosylation restores activity. Interestingly, CGL1 seems to be functional also as nonglycosylated enzyme. Two other cgl1 alleles showed splicing defects of their transcripts. In cgl1 C6, a point mutation affects the 3′ splice site of intron 14, resulting in frame shifts; in cgl1-T, intron 11 fails to splice due to insertion of a T-DNA copy. Introgression of stt3a-2 did not restore complex glycan formation in cgl1 C6 or cgl1-T but suppressed the N-acetyl-glucosaminyltransferase I defect in cgl1 C5. Root growth assays revealed synergistic effects in double mutants cgl1 C6 stt3a-2 and cgl1-T stt3a-2 only. Besides demonstrating the conditional nature of cgl1 C5 in planta, our observations with loss-of-function alleles cgl1 C6 and cgl1-T in the stt3a-2 underglycosylation background prove that correct N-glycosylation is important for normal root growth and morphology in Arabidopsis.

Collaboration


Dive into the Antje von Schaewen's collaboration.

Top Co-Authors

Avatar

Renate Scheibe

University of Osnabrück

View shared research outputs
Top Co-Authors

Avatar

Tanja Meyer

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Engelbert Weis

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge