Antoine Buchard
University of Bath
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antoine Buchard.
Energy and Environmental Science | 2010
Niall Macdowell; Nicholas H. Florin; Antoine Buchard; Jason P. Hallett; Amparo Galindo; George Jackson; Claire S. Adjiman; Charlotte K. Williams; Nilay Shah; Paul S. Fennell
In this paper, three of the leading options for large scale CO2 capture are reviewed from a technical perspective. We consider solvent-based chemisorption techniques, carbonate looping technology, and the so-called oxyfuel process. For each technology option, we give an overview of the technology, listing advantages and disadvantages. Subsequently, a discussion of the level of technological maturity is presented, and we conclude by identifying current gaps in knowledge and suggest areas with significant scope for future work. We then discuss the suitability of using ionic liquids as novel, environmentally benign solvents with which to capture CO2. In addition, we consider alternatives to simply sequestering CO2—we present a discussion on the possibility of recycling captured CO2 and exploiting it as a C1 building block for the sustainable manufacture of polymers, fine chemicals, and liquid fuels. Finally, we present a discussion of relevant systems engineering methodologies in carbon capture system design.
Chemical Communications | 2011
Antoine Buchard; Michael R. Kember; K. G. Sandeman; Charlotte K. Williams
A novel di-iron(III) catalyst for the copolymerisation of cyclohexene oxide and CO(2) to yield poly(cyclohexene carbonate), under mild conditions, is reported. The catalyst selectivity was completely changed on addition of an ammonium co-catalyst to yield only the cis-isomer of the cyclic carbonate, also under mild conditions. Additionally, the catalyst was active for propylene carbonate and styrene carbonate production at 1 atm pressure.
Journal of the American Chemical Society | 2011
Fabian Jutz; Antoine Buchard; Michael R. Kember; Siw Bodil Fredriksen; Charlotte K. Williams
The reaction kinetics of the copolymerization of carbon dioxide and cyclohexene oxide to produce poly(cyclohexene carbonate), catalyzed by a dizinc acetate complex, is studied by in situ attenuated total reflectance infrared (ATR-IR) and proton nuclear magnetic resonance ((1)H NMR) spectroscopy. A parameter study, including reactant and catalyst concentration and carbon dioxide pressure, reveals zero reaction order in carbon dioxide concentration, for pressures between 1 and 40 bar and temperatures up to 80 °C, and a first-order dependence on catalyst concentration and concentration of cyclohexene oxide. The activation energies for the formation of poly(cyclohexene carbonate) and the cyclic side product cyclohexene carbonate are calculated, by determining the rate coefficients over a temperature range between 65 and 90 °C and using Arrhenius plots, to be 96.8 ± 1.6 kJ mol(-1) (23.1 kcal mol(-1)) and 137.5 ± 6.4 kJ mol(-1) (32.9 kcal mol(-1)), respectively. Gel permeation chromatography (GPC), (1)H NMR spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry are employed to study the poly(cyclohexene carbonate) produced, and reveal bimodal molecular weight distributions, with narrow polydispersity indices (≤1.2). In all cases, two molecular weight distributions are observed, the higher value being approximately double the molecular weight of the lower value; this finding is seemingly independent of copolymerization conversion or reaction parameters. The copolymer characterization data and additional experiments in which chain transfer agents are added to copolymerization experiments indicate that rapid chain transfer reactions occur and allow an explanation for the observed bimodal molecular weight distributions. The spectroscopic and kinetic analyses enable a mechanism to be proposed for both the copolymerization reaction and possible side reactions; a dinuclear copolymerization active site is implicated.
Inorganic Chemistry | 2012
Thi-Phuong-Anh Cao; Antoine Buchard; Xavier F. Le Goff; Audrey Auffrant; Charlotte K. Williams
Preparation and characterization of three yttrium alkoxide complexes with new phosphasalen ligands are reported. The phosphasalens are analogues of the well-known salen ligands but with iminophosphorane donors replacing the imine functionality. The three yttrium alkoxide complexes show mono- and dinuclear structures in the solid state, depending on the substituents on the ligand. The new ligands and complexes are characterized using multinuclear NMR spectroscopy, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction experiments. The complexes are all rapid initiators for lactide polymerization; they show excellent polymerization control on addition of exogeneous alcohol. The mononuclear complex shows extremely rapid rates and a high degree of stereocontrol in rac-lactide polymerization, yielding heterotactic PLA (P(s) of 0.9). The phosphasalens are, therefore, excellent ligands for lactide ring-opening polymerization catalysis showing superior rates and stereocontrol versus salen ligands, which may be related to their excellent donating ability and the high degrees of steric protection they can confer.
Chemical Science | 2012
Michael R. Kember; Fabian Jutz; Antoine Buchard; Andrew J. P. White; Charlotte K. Williams
The synthesis and characterisation of a series of di-cobalt(II) halide complexes, coordinated by a macrocyclic ancillary ligand, is reported. The new complexes show excellent activity as catalysts for the copolymerisation of cyclohexene oxide (CHO) and carbon dioxide, under just 1 atmosphere of pressure of CO2. The complexation of a series of co-ligands has been investigated, including nucleophiles of varying strength, (4-dimethylaminopyridine (DMAP), N-methylimidazole (MeIm) and pyridine), and the anionic donor (Cl) from bulky ammonium salts, ([HNEt3]Cl, [DBU-H]Cl and [MTBD-H]Cl). Structure–activity studies of the complexes, including X-ray crystallography data, in conjunction with mass spectrometry experiments, are used to support a proposed dinuclear mechanism. The initial rate of copolymerisation, determined using in situ attenuated total reflectance infrared (ATR-IR) spectroscopy, shows a first order dependence on both the catalyst concentration and the concentration of cyclohexene oxide. A dinuclear mechanism is proposed in which catalysis occurs on the convex face of the molecule, leading to chain growth from a single site.
Journal of the American Chemical Society | 2016
Charles Romain; Yunqing Zhu; Paul Dingwall; Shyeni Paul; Henry S. Rzepa; Antoine Buchard; Charlotte K. Williams
Controlling polymer composition starting from mixtures of monomers is an important, but rarely achieved, target. Here a single switchable catalyst for both ring-opening polymerization (ROP) of lactones and ring-opening copolymerization (ROCOP) of epoxides, anhydrides, and CO2 is investigated, using both experimental and theoretical methods. Different combinations of four model monomers-ε-caprolactone, cyclohexene oxide, phthalic anhydride, and carbon dioxide-are investigated using a single dizinc catalyst. The catalyst switches between the distinct polymerization cycles and shows high monomer selectivity, resulting in block sequence control and predictable compositions (esters and carbonates) in the polymer chain. The understanding gained of the orthogonal reactivity of monomers, specifically controlled by the nature of the metal-chain end group, opens the way to engineer polymer block sequences.
Polymer Chemistry | 2012
Michael R. Kember; James Copley; Antoine Buchard; Charlotte K. Williams
The preparation of α,ω-hydroxy-telechelic poly(cyclohexene carbonate) from a dizinc catalyst is reported. The telechelic polymer, with an yttrium initiator, can be used to polymerize lactide, yielding new triblock copolymers, substantially derived from renewable resources.
Chemical Communications | 2007
Antoine Buchard; Audrey Auffrant; Christian Klemps; Laurence Vu-Do; Leila Boubekeur; Xavier F. Le Goff; Pascal Le Floch
New P-N ligands featuring a phosphino group and an iminophosphorane moiety were successfully employed in the nickel-catalysed dimerisation of ethylene.
Angewandte Chemie | 2014
Antoine Buchard; David R. Carbery; Matthew G. Davidson; Petya K. Ivanova; Ben J. Jeffery; Gabriele Kociok-Köhn; John P. Lowe
Poly(mandelic acid) (PMA) is an aryl analogue of poly(lactic acid) (PLA) and a biodegradable analogue of polystyrene. The preparation of stereoregular PMA was realized using a pyridine/mandelic acid adduct (Py⋅MA) as an organocatalyst for the ring-opening polymerization (ROP) of the cyclic O-carboxyanhydride (manOCA). Polymers with a narrow polydispersity index and excellent molecular-weight control were prepared at ambient temperature. These highly isotactic chiral polymers exhibit an enhancement of the glass-transition temperature (T(g)) of 15 °C compared to the racemic polymer, suggesting potential future application as high-performance commodity and biomedical materials.
Archive | 2012
Antoine Buchard; Clare Bakewell; Jonathan Weiner; Charlotte K. Williams
This review describes the application of organometallic and inorganic complexes as initiators and catalysts for polymerizations using renewable resources. It focuses on the ring-opening polymerization of lactide and the alternating copolymerization of carbon dioxide and epoxides. For lactide ring-opening polymerization, a general background to the reaction mechanism, kinetics, stereochemical control and polymerization control is presented. This is followed by reviews of the use of groups 3 and 13 complexes as initiators. Group 3 complexes show excellent rates, amongst the fastest reported for this polymerization, and in some cases stereocontrol. The group 13 complexes have good precedent for stereocontrol; recent advances using heavier group 13 elements, In and Ga, are highlighted. For the alternating copolymerization, an overview of the reaction kinetics, mechanism and control is presented. Recent advances in the use of catalyst operating at low pressure and dinuclear catalysts are presented.