Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antoine Danchin is active.

Publication


Featured researches published by Antoine Danchin.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Essential Bacillus subtilis genes

Kazuo Kobayashi; S D Ehrlich; Alessandra M. Albertini; G. Amati; Kasper Krogh Andersen; M. Arnaud; Kei Asai; S. Ashikaga; Stéphane Aymerich; Philippe Bessières; F. Boland; S.C. Brignell; Sierd Bron; Keigo Bunai; J. Chapuis; L.C. Christiansen; Antoine Danchin; M. Débarbouillé; Etienne Dervyn; E. Deuerling; Kevin M. Devine; Susanne Krogh Devine; Oliver Dreesen; Jeff Errington; S. Fillinger; Simon J. Foster; Yasutaro Fujita; Alessandro Galizzi; R. Gardan; Caroline Eschevins

To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among ≈4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from bacteria with small genomes. Unexpectedly, most genes involved in the Embden–Meyerhof–Parnas pathway are essential. Identification of unknown and unexpected essential genes opens research avenues to better understanding of processes that sustain bacterial life.


PLOS Genetics | 2009

Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths

Marie Touchon; Claire Hoede; Olivier Tenaillon; Valérie Barbe; Simon Baeriswyl; Philippe Bidet; Edouard Bingen; Stéphane Bonacorsi; Christiane Bouchier; Odile Bouvet; Alexandra Calteau; Hélène Chiapello; Olivier Clermont; Stéphane Cruveiller; Antoine Danchin; Médéric Diard; Carole Dossat; Meriem El Karoui; Eric Frapy; Louis Garry; Jean Marc Ghigo; Anne Marie Gilles; James R. Johnson; Chantal Le Bouguénec; Mathilde Lescat; Sophie Mangenot; Vanessa Martinez-Jéhanne; Ivan Matic; Xavier Nassif; Sophie Oztas

The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the ∼18,000 families of orthologous genes, we found ∼2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genomes long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome.


Nature Biotechnology | 2003

The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens.

Eric Duchaud; Christophe Rusniok; Lionel Frangeul; Carmen Buchrieser; Alain Givaudan; Sead Taourit; Stéphanie Bocs; Caroline Boursaux-Eude; Michael Chandler; Jean-François Charles; Elie Dassa; Richard Derose; Sylviane Derzelle; Georges Freyssinet; Claudine Médigue; Anne Lanois; Kerrie Powell; Patricia Siguier; Rachel Vincent; Vincent Paul Mary Wingate; Mohamed Zouine; Philippe Glaser; Noël Boemare; Antoine Danchin; Frank Kunst

Photorhabdus luminescens is a symbiont of nematodes and a broad-spectrum insect pathogen. The complete genome sequence of strain TT01 is 5,688,987 base pairs (bp) long and contains 4,839 predicted protein-coding genes. Strikingly, it encodes a large number of adhesins, toxins, hemolysins, proteases and lipases, and contains a wide array of antibiotic synthesizing genes. These proteins are likely to play a role in the elimination of competitors, host colonization, invasion and bioconversion of the insect cadaver, making P. luminescens a promising model for the study of symbiosis and host-pathogen interactions. Comparison with the genomes of related bacteria reveals the acquisition of virulence factors by extensive horizontal transfer and provides clues about the evolution of an insect pathogen. Moreover, newly identified insecticidal proteins may be effective alternatives for the control of insect pests.


Substance | 1983

Permanence and Change

Antoine Danchin; Carl R. Lovitt

(. . .) Since nothing is created, nor lost, nor changed, how could an object be numbered among beings after it has been modified? (. . .) If, in fact, several distinct objects exist, I should be able to say that each is the one (the being). For if there is earth, water, air, fire, iron, life and death, white and black, and everything else, all things that are said to be real, it is necessary that each thing be as it was perceived and interpreted the first time, that it neither transform itself nor become different, but that each thing always exists exactly as it is. Yet, on the one hand, we claim to see, hear, and smell correctly, while on the other it appears to us (. . .) that everything transforms itself and that nothing that was or is remains identical to itself. ... Consequently, it follows that we neither see nor have knowledge of beings. Thus we arrive at a contradiction: having asserted that several distinct, eternal, constituted and well delimited objects exist, it seems to us (. . .) that everything becomes different and transforms itself.


Molecular Microbiology | 2001

Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS

Florence Hommais; Evelyne Krin; Christine Laurent-Winter; Olga Soutourina; Alain Malpertuy; Jean-Pierre Le Caer; Antoine Danchin; Philippe Bertin

Despite many years of intense work investigating the function of nucleoid‐associated proteins in prokaryotes, their role in bacterial physiology remains largely unknown. The two‐dimensional protein patterns were compared and expression profiling was carried out on H‐NS‐deficient and wild‐type strains of Escherichia coli K‐12. The expression of approximately 5% of the genes and/or the accumulation of their protein was directly or indirectly altered in the hns mutant strain. About one‐fifth of these genes encode proteins that are involved in transcription or translation and one‐third are known to or were in silico predicted to encode cell envelope components or proteins that are usually involved in bacterial adaptation to changes in environmental conditions. The increased expression of several genes in the mutant resulted in a better ability of this strain to survive at low pH and high osmolarity than the wild‐type strain. In particular, the putative regulator, YhiX, plays a central role in the H‐NS control of genes required in the glutamate‐dependent acid stress response. These results suggest that there is a strong relationship between the H‐NS regulon and the maintenance of intracellular homeostasis.


The New England Journal of Medicine | 2011

Open-Source Genomic Analysis of Shiga-Toxin-Producing E. coli O104:H4

Holger Rohde; Junjie Qin; Yujun Cui; Dongfang Li; Nicholas J. Loman; Moritz Hentschke; Wentong Chen; Fei Pu; Yangqing Peng; Junhua Li; Feng Xi; Shenghui Li; Yin Li; Zhaoxi Zhang; Xianwei Yang; Meiru Zhao; Peng Wang; Yuanlin Guan; Zhong Cen; Xiangna Zhao; Martin Christner; Robin Kobbe; Sebastian Loos; Jun Oh; Liang Yang; Antoine Danchin; George F. Gao; Yajun Song; Yingrui Li; Huanming Yang

An outbreak caused by Shiga-toxin–producing Escherichia coli O104:H4 occurred in Germany in May and June of 2011, with more than 3000 persons infected. Here, we report a cluster of cases associated with a single family and describe an open-source genomic analysis of an isolate from one member of the family. This analysis involved the use of rapid, bench-top DNA sequencing technology, open-source data release, and prompt crowd-sourced analyses. In less than a week, these studies revealed that the outbreak strain belonged to an enteroaggregative E. coli lineage that had acquired genes for Shiga toxin 2 and for antibiotic resistance.


Molecular Microbiology | 2003

Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228)

Yue-Qing Zhang; Shuangxi Ren; Hua-Lin Li; Yong-Xiang Wang; Gang Fu; Jian Yang; Zhiqiang Qin; You-Gang Miao; Wen-Yi Wang; Run-Sheng Chen; Yan Shen; Zhu Chen; Zhenghong Yuan; Guoping Zhao; Di Qu; Antoine Danchin; Yu-Mei Wen

Staphylococcus epidermidis strains are diverse in their pathogenicity; some are invasive and cause serious nosocomial infections, whereas others are non‐pathogenic commensal organisms. To analyse the implications of different virulence factors in Staphylococcus epidermidis infections, the complete genome of Staphylococcus epidermidis strain ATCC 12228, a non‐biofilm forming, non‐infection associated strain used for detection of residual antibiotics in food products, was sequenced. This strain showed low virulence by mouse and rat experimental infections. The genome consists of a single 2499 279 bp chromosome and six plasmids. The chromosomal G + C content is 32.1% and 2419 protein coding sequences (CDS) are predicted, among which 230 are putative novel genes. Compared to the virulence factors in Staphylococcus aureus, aside from δ‐haemolysin and β‐haemolysin, other toxin genes were not found. In contrast, the majority of adhesin genes are intact in ATCC 12228. Most strikingly, the ica operon coding for the enzymes synthesizing interbacterial cellular polysaccharide is missing in ATCC 12228 and rearrangements of adjacent genes are shown. No mec genes, IS256, IS257, were found in ATCC 12228. It is suggested that the absence of the ica operon is a genetic marker in commensal Staphylococcus epidermidis strains which are less likely to become invasive.


The EMBO Journal | 1988

Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase―haemolysin bifunctional protein of Bordetella pertussis

Philippe Glaser; Hiroshi Sakamoto; J Bellalou; Agnes Ullmann; Antoine Danchin

The calmodulin‐sensitive adenylate cyclase of Bordetella pertussis, a 45 kd secreted protein, is synthesized as a 1706 amino acid precursor. We have shown that this precursor is a bifunctional protein, carrying both adenylate cyclase and haemolytic activities. The 1250 carboxy‐terminal amino acids of the precursor showed 25% similarity with Escherichia coli alpha‐haemolysin (HlyA) and 22% similarity with Pasteurella haemolytica leucotoxin. Three open reading frames were identified downstream from the cyaA gene: cyaB, cyaD and cyaE, coding for polypeptides of 712, 440 and 474 amino acid residues, respectively. As for E. coli alpha‐haemolysin, secretion of B.pertussis adenylate cyclase and haemolysin requires the expression of additional genes. The gene products of cyaB and cyaD are highly similar to HlyB and HlyD, known to be necessary for the transport of HlyA across the cell envelope and for its release into the external medium. Complementation and functional studies indicate that the B.pertussis adenylate cyclase‐haemolysin bifunctional protein is secreted by a mechanism similar to that described for E.coli alpha‐haemolysin, requiring, in addition to the cyaB and cyaD gene products, the presence of a third gene product specified by the cyaE gene.


Journal of Bacteriology | 2001

CotA of Bacillus subtilis Is a Copper-Dependent Laccase

Marie-Françoise Hullo; Ivan Moszer; Antoine Danchin; Isabelle Martin-Verstraete

The spore coat protein CotA of Bacillus subtilis displays similarities with multicopper oxidases, including manganese oxidases and laccases. B. subtilis is able to oxidize manganese, but neither CotA nor other sporulation proteins are involved. We demonstrate that CotA is a laccase. Syringaldazine, a specific substrate of laccases, reacted with wild-type spores but not with DeltacotA spores. CotA may participate in the biosynthesis of the brown spore pigment, which appears to be a melanin-like product and to protect against UV light.


Molecular Microbiology | 1988

The calmodulin‐sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia col

Philippe Glaser; Daniel Ladant; O. Sezer; F. Pichot; Agnes Ullmann; Antoine Danchin

The adenylate cyclase toxin of the prokaryote Bordetella pertussis is stimulated by the eukaryotic regulatory protein, calmodulin. A general strategy, using the adenylate‐cyclase‐calmodulin interaction as a tool, has permitted cloning and expression of the toxin in Escherichia coli in the absence of any B. pertussis trans‐activating factor. We show that the protein is synthesized in a large precursor form composed of 1706 amino acids. The calmodulin‐stimulated catalytic activity resides in the amino‐terminal 450 amino acids of the adenylate cyclase. The enzyme expressed in E. coli is recognized in Western blots by antibodies directed against purified B. pertussis adenylate cyclase, and its activity is inhibited by these antibodies.

Collaboration


Dive into the Antoine Danchin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudine Médigue

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge