Antoine Nissant
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antoine Nissant.
Nature Neuroscience | 2009
Antoine Nissant; Cedric Bardy; Hiroyuki Katagiri; Kerren Murray; Pierre-Marie Lledo
To explore the functional consequences of adult neurogenesis in the mouse olfactory bulb, we investigated plasticity at glutamatergic synapses onto GABAergic interneurons. We found that one subset of excitatory synapses onto adult-born granule cells showed long-term potentiation shortly after their arrival in the bulb. This property faded as the newborn neurons matured. These results indicate that recently generated adult-born olfactory interneurons undergo different experience-dependent synaptic modifications compared with their pre-existing mature neighbors and provide a possible substrate for adult neurogenesis–dependent olfactory learning.
Nature Neuroscience | 2014
Edgar Soria-Gómez; Luigi Bellocchio; Leire Reguero; Gabriel Lepousez; Claire Martin; Mounir Bendahmane; Sabine Ruehle; Floor Remmers; Tiffany Desprez; Isabelle Matias; Theresa Wiesner; Astrid Cannich; Antoine Nissant; Aya Wadleigh; Hans-Christian Pape; Anna Chiarlone; Carmelo Quarta; Danièle Verrier; Peggy Vincent; Federico Massa; Beat Lutz; Manuel Guzmán; Hirac Gurden; Guillaume Ferreira; Pierre-Marie Lledo; Pedro Grandes; Giovanni Marsicano
Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoids increased odor detection and food intake in fasted mice by decreasing excitatory drive from olfactory cortex areas to the MOB. Consistently, cannabinoid agonists dampened in vivo optogenetically stimulated excitatory transmission in the same circuit. Our data indicate that cortical feedback projections to the MOB crucially regulate food intake via CB1 receptor signaling, linking the feeling of hunger to stronger odor processing. Thus, CB1 receptor–dependent control of cortical feedback projections in olfactory circuits couples internal states to perception and behavior.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Samuel Lagier; Patrizia Panzanelli; Raúl E. Russo; Antoine Nissant; Brice Bathellier; Marco Sassoè-Pognetto; Jean-Marc Fritschy; Pierre-Marie Lledo
In the olfactory bulb (OB), odorants induce oscillations in the γ range (20–80 Hz) that play an important role in the processing of sensory information. Synaptic transmission between dendrites is a major contributor to this processing. Glutamate released from mitral cell dendrites excites the dendrites of granule cells, which in turn mediate GABAergic inhibition back onto mitral cells. Although this reciprocal synapse is thought to be a key element supporting oscillatory activity, the mechanisms by which dendrodendritic inhibition induces and maintains γ oscillations remain unknown. Here, we assessed the role of the dendrodendritic inhibition, using mice lacking the GABAA receptor α1-subunit, which is specifically expressed in mitral cells but not in granule cells. The spontaneous inhibitory postsynaptic current frequency in these mutants was low and was consistent with the reduction of GABAA receptor clusters detected by immunohistochemistry. The remaining GABAA receptors in mitral cells contained the α3-subunit and supported slower decaying currents of unchanged amplitude. Overall, inhibitory-mediated interactions between mitral cells were smaller and slower in mutant than in WT mice, although the strength of sensory afferent inputs remained unchanged. Consequently, both experimental and theoretical approaches revealed slower γ oscillations in the OB network of mutant mice. We conclude, therefore, that fast oscillations in the OB circuit are strongly constrained by the precise location, subunit composition and kinetics of GABAA receptors expressed in mitral cells.
The Journal of Neuroscience | 2009
Patrizia Panzanelli; Cedric Bardy; Antoine Nissant; Marta Pallotto; Marco Sassoè-Pognetto; Pierre-Marie Lledo; Jean-Marc Fritschy
New olfactory bulb granule cells (GCs) are GABAergic interneurons continuously arising from neuronal progenitors and integrating into preexisting bulbar circuits. They receive both GABAergic and glutamatergic synaptic inputs from olfactory bulb intrinsic neurons and centrifugal afferents. Here, we investigated the spatiotemporal dynamic of newborn GC synaptogenesis in adult mouse olfactory bulb. First, we established that GABAergic synapses onto mature GC dendrites contain the GABAA receptor α2 subunit along with the postsynaptic scaffolding protein gephyrin. Next, we characterized morphologically and electrophysiologically the development of GABAergic and glutamatergic inputs onto newborn GCs labeled with eGFP (enhanced green fluorescent protein) using lentiviral vectors. Already when reaching the GC layer (GCL), at 3 d post-vector injection (dpi), newborn GCs exhibited tiny voltage-dependent sodium currents and received functional GABAergic and glutamatergic synapses, recognized immunohistochemically by apposition of specific presynaptic and postsynaptic markers. Thereafter, GABAergic and glutamatergic synaptic contacts increased differentially in the GCL, and at 7 dpi, PSD-95 clusters outnumbered gephyrin clusters. Thus, the weight of GABAergic input was predominant at early stages of GC maturation, but not later. Newborn GC dendrites first reached the external plexiform layer at 4 dpi, where they received functional GABAergic contacts at 5 dpi. Reciprocal synapses initially were formed on GC dendritic shafts, where they might contribute to spine formation. Their presence was confirmed ultrastructurally at 7 dpi. Together, our findings unravel rapid synaptic integration of newborn GCs in adult mouse olfactory bulb, with GABAergic and glutamatergic influences being established proximally before formation of output synapses by apical GC dendrites onto mitral/tufted cells.
Neuron | 2015
Gabriel Lepousez; Antoine Nissant; Pierre-Marie Lledo
For a long time, the mammalian brain has been perceived to be a static organ. However, the discovery of adult neurogenesis in most mammalian species, including humans, monkeys, and rodents, has disrupted this view. As this continuous regeneration has an effect on established behavioral patterns, it holds promising therapeutic potential. However, before harnessing this potential regenerative power, we must understand what effects new neurons have on existing brain circuits. Ongoing research contributes to several important steps toward bridging the gap between adult-born neurons, circuits, and behavior. The study of adult neurogenesis in different neurogenic regions from a systems neuroscience perspective will pave the way to understanding how it supports adaptive behavior and why its dysfunction correlates with some human brain disorders.
The Journal of Neuroscience | 2008
Matthew S. Grubb; Antoine Nissant; Kerren Murray; Pierre-Marie Lledo
The first synapse in olfaction undergoes considerable anatomical plasticity in both early postnatal development and adult neurogenesis, yet we know very little concerning its functional maturation at these times. Here, we used whole-cell recordings in olfactory bulb slices to describe olfactory nerve inputs to developing postnatal neurons and to maturing adult-born cells labeled with a GFP-encoding lentivirus. In both postnatal development and adult neurogenesis, the maturation of olfactory nerve synapses involved an increase in the relative contribution of AMPA over NMDA receptors, and a decrease in the contribution of NMDA receptors containing the NR2B subunit. These postsynaptic transformations, however, were not mirrored by presynaptic changes: in all cell groups, paired-pulse depression remained constant as olfactory nerve synapses matured. Although maturing cells may therefore offer, transiently, a functionally distinct connection for inputs from the nose, presynaptic function at the first olfactory connection remains remarkably constant in the face of considerable anatomical plasticity.
The Journal of Neuroscience | 2011
Sophie Scotto-Lomassese; Antoine Nissant; Tatiana Mota; Marie Néant-Féry; Ben A. Oostra; Charles A. Greer; Pierre-Marie Lledo; Alain Trembleau; Isabelle Caillé
The fragile X mental retardation protein (FMRP) is an RNA-binding protein essential for multiple aspects of neuronal mRNA metabolism. Its absence leads to the fragile X syndrome, the most prevalent genetic form of mental retardation. The anatomical landmark of the disease, also present in the Fmr1 knock-out (KO) mice, is the hyperabundance of immature-looking lengthened dendritic spines. We used the well known continuous production of adult-born granule cells (GCs) in the mouse olfactory bulb (OB) to analyze the consequences of Fmrp loss on the differentiation of GCs. Morphological analysis of GCs in the Fmr1 KO mice showed an increase in spine density without a change in spine length. We developed an RNA interference strategy to cell-autonomously mutate Fmr1 in a wild-type OB network. Mutated GCs displayed an increase in spine density and spine length. Detailed analysis of the spines through immunohistochemistry, electron microscopy, and electrophysiology surprisingly showed that, despite these abnormalities, spines receive normal glutamatergic synapses, and thus that mutated adult-born neurons are synaptically integrated into the OB circuitry. Time-course analysis of the spine defects showed that Fmrp cell-autonomously downregulates the level and rate of spine production and limits their overgrowth. Finally, we report that Fmrp does not regulate dendritogenesis in standard conditions but is necessary for activity-dependent dendritic remodeling. Overall, our study of Fmrp in the context of adult neurogenesis has enabled us to carry out a precise dissection of the role of Fmrp in neuronal differentiation and underscores its pleiotropic involvement in both spinogenesis and dendritogenesis.
Journal of The American Society of Nephrology | 2005
Stéphane Lourdel; Johannes Loffing; Guillaume Favre; Marc Paulais; Antoine Nissant; Panos Fakitsas; Christophe Créminon; Eric Féraille; François Verrey; Jacques Teulon; Alain Doucet; Georges Deschênes
Edema and ascites in nephrotic syndrome mainly result from increased Na+ reabsorption along connecting tubules and cortical collecting ducts (CCD). In puromycin aminonucleoside (PAN)-induced nephrosis, increased Na+ reabsorption is associated with increased activity of the epithelial sodium channel (ENaC) and Na+,K+-ATPase, two targets of aldosterone. Because plasma aldosterone increases in PAN-nephrotic rats, the aldosterone dependence of ENaC activation in PAN nephrosis was investigated. For this purpose, (1) the mechanism of ENaC activation was compared in nephrotic and sodium-depleted rats, and (2) ENaC activity in PAN-nephrotic rats was evaluated in the absence of hyperaldosteronemia. The mechanism of ENaC activation was similar in CCD from nephrotic and sodium-depleted rats, as demonstrated by (1) increased number of active ENaC evaluated by patch clamp, (2) recruitment of ENaC to the apical membrane determined by immunohistochemistry, (3) shift in the electrophoretic profile of gamma-ENaC, and (4) increased abundance of beta-ENaC mRNA. Corticosteroid clamp fully prevented all PAN-induced changes in ENaC but did not alter the development of a full-blown nephrotic syndrome with massive albuminuria, amiloride-sensitive sodium retention, induction of CCD Na+,K+-ATPase, and ascites. It is concluded that in PAN-nephrosis, (1) ENaC activation in CCD is secondary to hyperaldosteronemia, (2) sodium retention and induction of Na+,K+-ATPase in CCD are independent of hyperaldosteronemia, and (3) ENaC is not necessarily limiting for sodium reabsorption in the distal nephron.
The Journal of Neuroscience | 2011
Richard Belvindrah; Antoine Nissant; Pierre-Marie Lledo
Neuronal precursors are continuously integrated into the adult olfactory bulb (OB). The vast majority of these precursor cells originates from the subventricular zone and migrates along the rostral migratory stream (RMS) en route to the OB. This process, called postnatal neurogenesis, results from intricate pathways depending both on cell-autonomous factors and extrinsic regulation provided by the local environment. Using electroporation in postnatal mice to label neuronal precursors with green fluorescent protein (GFP) and to reduce the expression levels of doublecortin (DCX) with short-hairpin (Sh) RNA, we investigated the consequences of impairing migration on the fate of postnatal-formed neurons. First, we showed that electroporation of Dcx ShRNA plasmid efficiently knocks down the expression of DCX and disrupts cells migration along the RMS. Second, we found misplaced anomalous migrating cells that displayed defects in polarity and directionality. Third, patch-clamp recordings performed at 5–7 days post-electroporation (dpe) revealed increased density of voltage-dependent Na+ channels and enhanced responsiveness to GABAA receptor agonist. At later time points (i.e., 12 and 30 dpe), most of the Dcx ShRNA+ cells developed in the core of the OB and displayed aberrant dendritic length and branching. Additional analysis revealed the formation of GABAergic and glutamatergic synaptic inputs on the mispositioned neurons. Finally, quantifying fate determination by numbering the proportion of GFP+/calretinin+ newborn neurons revealed that Dcx ShRNA+ cells acquire mature phenotype despite their immature location. We conclude that altering the pace of migration at early stages of postnatal neurogenesis profoundly modifies the tightly orchestrated steps of neuronal maturation, and unveils the influence of microenvironment on controlling neuronal development in the postnatal forebrain.
The Journal of General Physiology | 2003
Stéphane Lourdel; Marc Paulais; Pedro Marvao; Antoine Nissant; Jacques Teulon
The distal-convoluted tubule (DCT) of the kidney absorbs NaCl mainly via an Na+-Cl− cotransporter located at the apical membrane, and Na+, K+ ATPase at the basolateral side. Cl− transport across the basolateral membrane is thought to be conductive, but the corresponding channels have not yet been characterized. In the present study, we investigated Cl− channels on microdissected mouse DCTs using the patch-clamp technique. A channel of ∼9 pS was found in 50% of cell-attached patches showing anionic selectivity. The NP o in cell-attached patches was not modified when tubules were preincubated in the presence of 10−5 M forskolin, but the channel was inhibited by phorbol ester (10−6 M). In addition, NP o was significantly elevated when the calcium in the pipette was increased from 0 to 5 mM (NP o increased threefold), or pH increased from 6.4 to 8.0 (NP o increased 15-fold). Selectivity experiments conducted on inside-out patches showed that the Na+ to Cl− relative permeability was 0.09, and the anion selectivity sequence Cl− ∼ I−> Br− ∼ NO3 − > F−. Intracellular NPPB (10−4 M) and DPC (10−3 M) blocked the channel by 65% and 80%, respectively. The channel was inhibited at acid intracellular pH, but intracellular ATP and PKA had no effect. ClC-K Cl− channels are characterized by their sensitivity to the external calcium and to pH. Since immunohistochemical data indicates that ClC-K2, and perhaps ClC-K1, are present on the DCT basolateral membrane, we suggest that the channel detected in this study may belong to this subfamily of the ClC channel family.