Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antoine Royant is active.

Publication


Featured researches published by Antoine Royant.


Science | 2009

Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome.

Xiaokun Shu; Antoine Royant; Michael Z. Lin; Todd A. Aguilera; Varda Lev-Ram; Paul Steinbach; Roger Y. Tsien

Infrared Vision Proteins from jellyfish and corals that fluoresce in the visible wavelength range have revolutionized optical imaging of cells. However, these wavelengths are absorbed by hemoglobin, water, and lipids and the proteins are thus not appropriate for deep-tissue imaging. Now Shu et al. (p. 804) have engineered a bacteriophytochrome from Deinococcus radiodurans that incorporates biliverdin as the chromophore, to fluoresce with excitation and emission spectra of 648 and 708 nanometers, respectively. These infrared fluorescent proteins are expressed well in mammalian cells and mice, and can be used for whole-body imaging. An engineered infrared fluorescent protein derived from an extremophile bacterium gives a strong signal in mammalian cells. A bacteriophytochrome incorporating biliverdin has been engineered to generate strong infrared fluorescence in mammalian cells and whole mice. Visibly fluorescent proteins (FPs) from jellyfish and corals have revolutionized many areas of molecular and cell biology, but the use of FPs in intact animals, such as mice, has been handicapped by poor penetration of excitation light. We now show that a bacteriophytochrome from Deinococcus radiodurans, incorporating biliverdin as the chromophore, can be engineered into monomeric, infrared-fluorescent proteins (IFPs), with excitation and emission maxima of 684 and 708 nm, respectively; extinction coefficient >90,000 M−1 cm−1; and quantum yield of 0.07. IFPs express well in mammalian cells and mice and spontaneously incorporate biliverdin, which is ubiquitous as the initial intermediate in heme catabolism but has negligible fluorescence by itself. Because their wavelengths penetrate tissue well, IFPs are suitable for whole-body imaging. The IFPs developed here provide a scaffold for further engineering.


Structure | 1999

Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution.

Hassan Belrhali; Peter Nollert; Antoine Royant; Christoph Menzel; Jurg P. Rosenbusch; Ehud M. Landau; Eva Pebay-Peyroula

BACKGROUND Bacteriorhodopsin (bR) from Halobacterium salinarum is a proton pump that converts the energy of light into a proton gradient that drives ATP synthesis. The protein comprises seven transmembrane helices and in vivo is organized into purple patches, in which bR and lipids form a crystalline two-dimensional array. Upon absorption of a photon, retinal, which is covalently bound to Lys216 via a Schiff base, is isomerized to a 13-cis,15-anti configuration. This initiates a sequence of events - the photocycle - during which a proton is transferred from the Schiff base to Asp85, followed by proton release into the extracellular medium and reprotonation from the cytoplasmic side. RESULTS The structure of bR in the ground state was solved to 1.9 A resolution from non-twinned crystals grown in a lipidic cubic phase. The structure reveals eight well-ordered water molecules in the extracellular half of the putative proton translocation pathway. The water molecules form a continuous hydrogen-bond network from the Schiff-base nitrogen (Lys216) to Glu194 and Glu204 and includes residues Asp85, Asp212 and Arg82. This network is involved both in proton translocation occurring during the photocycle, as well as in stabilizing the structure of the ground state. Nine lipid phytanyl moieties could be modeled into the electron-density maps. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of single crystals demonstrated the presence of four different charged lipid species. CONCLUSIONS The structure of protein, lipid and water molecules in the crystals represents the functional entity of bR in the purple membrane of the bacteria at atomic resolution. Proton translocation from the Schiff base to the extracellular medium is mediated by a hydrogen-bond network that involves charged residues and water molecules.


Nature Communications | 2012

Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%.

Joachim Goedhart; D. von Stetten; Marjolaine Noirclerc-Savoye; Mickaël Lelimousin; L. Joosen; Hink; L. van Weeren; Th. W. J. Gadella; Antoine Royant

Cyan variants of green fluorescent protein are widely used as donors in Förster resonance energy transfer experiments. The popular, but modestly bright, Enhanced Cyan Fluorescent Protein (ECFP) was sequentially improved into the brighter variants Super Cyan Fluorescent Protein 3A (SCFP3A) and mTurquoise, the latter exhibiting a high-fluorescence quantum yield and a long mono-exponential fluorescence lifetime. Here we combine X-ray crystallography and excited-state calculations to rationalize these stepwise improvements. The enhancement originates from stabilization of the seventh β-strand and the strengthening of the sole chromophore-stabilizing hydrogen bond. The structural analysis highlighted one suboptimal internal residue, which was subjected to saturation mutagenesis combined with fluorescence lifetime-based screening. This resulted in mTurquoise2, a brighter variant with faster maturation, high photostability, longer mono-exponential lifetime and the highest quantum yield measured for a monomeric fluorescent protein. Together, these properties make mTurquoise2 the preferable cyan variant of green fluorescent protein for long-term imaging and as donor for Förster resonance energy transfer to a yellow fluorescent protein.


Nature | 1999

High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle

Karl Edman; Peter Nollert; Antoine Royant; Hassan Belrhali; Eva Pebay-Peyroula; Janos Hajdu; Richard Neutze; Ehud M. Landau

Bacteriorhodopsin is the simplest known photon-driven proton pump and as such provides a model for the study of a basic function in bioenergetics. Its seven transmembrane helices encompass a proton translocation pathway containing the chromophore, a retinal molecule covalently bound to lysine 216 through a protonated Schiff base, and a series of proton donors and acceptors. Photoisomerization of the all-trans retinal to the 13-cis configuration initiates the vectorial translocation of a proton from the Schiff base, the primary proton donor, to the extracellular side, followed by reprotonation of the Schiff base from the cytoplasm. Here we describe the high-resolution X-ray structure of an early intermediate in the photocycle of bacteriorhodopsin, which is formed directly after photoexcitation. A key water molecule is dislocated, allowing the primary proton acceptor, Asp 85, to move. Movement of the main-chain Lys 216 locally disrupts the hydrogen-bonding network of helix G, facilitating structural changes later in the photocycle.


Proceedings of the National Academy of Sciences of the United States of America | 2001

X-ray structure of sensory rhodopsin II at 2.1-Å resolution

Antoine Royant; Peter Nollert; Karl Edman; Richard Neutze; Ehud M. Landau; Eva Pebay-Peyroula; Javier Navarro

Sensory rhodopsins (SRs) belong to a subfamily of heptahelical transmembrane proteins containing a retinal chromophore. These photoreceptors mediate the cascade of vision in animal eyes and phototaxis in archaebacteria and unicellular flagellated algae. Signal transduction by these photoreceptors occurs by means of transducer proteins. The two archaebacterial sensory rhodopsins SRI and SRII are coupled to the membrane-bound HtrI and HtrII transducer proteins. Activation of these proteins initiates phosphorylation cascades that modulate the flagellar motors, resulting in either attractant (SRI) or repellent (SRII) phototaxis. In addition, transducer-free SRI and SRII were shown to operate as proton pumps, analogous to bacteriorhodopsin. Here, we present the x-ray structure of SRII from Natronobacterium pharaonis (pSRII) at 2.1-Å resolution, revealing a unique molecular architecture of the retinal-binding pocket. In particular, the structure of pSRII exhibits a largely unbent conformation of the retinal (as compared with bacteriorhodopsin and halorhodopsin), a hydroxyl group of Thr-204 in the vicinity of the Schiff base, and an outward orientation of the guanidinium group of Arg-72. Furthermore, the structure reveals a putative chloride ion that is coupled to the Schiff base by means of a hydrogen-bond network and a unique, positively charged surface patch for a probable interaction with HtrII. The high-resolution structure of pSRII provides a structural basis to elucidate the mechanisms of phototransduction and color tuning.


Nature | 2000

Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin

Antoine Royant; Karl Edman; Thomas Ursby; Eva Pebay-Peyroula; Ehud M. Landau; Richard Neutze

A wide variety of mechanisms are used to generate a proton-motive potential across cell membranes, a function lying at the heart of bioenergetics. Bacteriorhodopsin, the simplest known proton pump, provides a paradigm for understanding this process. Here we report, at 2.1 Å resolution, the structural changes in bacteriorhodopsin immediately preceding the primary proton transfer event in its photocycle. The early structural rearrangements propagate from the proteins core towards the extracellular surface, disrupting the network of hydrogen-bonded water molecules that stabilizes helix C in the ground state. Concomitantly, a bend of this helix enables the negatively charged primary proton acceptor, Asp 85, to approach closer to the positively charged primary proton donor, the Schiff base. The primary proton transfer event would then neutralize these two groups, cancelling their electrostatic attraction and facilitating a relaxation of helix C to a less strained geometry. Reprotonation of the Schiff base by Asp 85 would thereby be impeded, ensuring vectorial proton transport. Structural rearrangements also occur near the proteins surface, aiding proton release to the extracellular medium.


Biochimica et Biophysica Acta | 2002

Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport.

Richard Neutze; Eva Pebay-Peyroula; Karl Edman; Antoine Royant; Javier Navarro; Ehud M. Landau

Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the proteins active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pK(a) of the Schiff base (the primary proton donor) and the low pK(a) of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.


Journal of Biological Chemistry | 2011

Snapshots of Enzymatic Baeyer-Villiger Catalysis: Oxygen Activation and Intermediate Stabilization.

Roberto Orru; Hanna M. Dudek; Christian Martinoli; Daniel E. Torres Pazmiño; Antoine Royant; Martin Weik; Marco W. Fraaije; Andrea Mattevi

Baeyer-Villiger monooxygenases catalyze the oxidation of carbonylic substrates to ester or lactone products using NADPH as electron donor and molecular oxygen as oxidative reactant. Using protein engineering, kinetics, microspectrophotometry, crystallography, and intermediate analogs, we have captured several snapshots along the catalytic cycle which highlight key features in enzyme catalysis. After acting as electron donor, the enzyme-bound NADP(H) forms an H-bond with the flavin cofactor. This interaction is critical for stabilizing the oxygen-activating flavin-peroxide intermediate that results from the reaction of the reduced cofactor with oxygen. An essential active-site arginine acts as anchoring element for proper binding of the ketone substrate. Its positively charged guanidinium group can enhance the propensity of the substrate to undergo a nucleophilic attack by the flavin-peroxide intermediate. Furthermore, the arginine side chain, together with the NADP+ ribose group, forms the niche that hosts the negatively charged Criegee intermediate that is generated upon reaction of the substrate with the flavin-peroxide. The fascinating ability of Baeyer-Villiger monooxygenases to catalyze a complex multistep catalytic reaction originates from concerted action of this Arg-NADP(H) pair and the flavin subsequently to promote flavin reduction, oxygen activation, tetrahedral intermediate formation, and product synthesis and release. The emerging picture is that these enzymes are mainly oxygen-activating and “Criegee-stabilizing” catalysts that act on any chemically suitable substrate that can diffuse into the active site, emphasizing their potential value as toolboxes for biocatalytic applications.


The EMBO Journal | 2009

Crystal structure of plant light‐harvesting complex shows the active, energy‐transmitting state

Tiago Barros; Antoine Royant; Jörg Standfuss; Werner Kühlbrandt

Plants dissipate excess excitation energy as heat by non‐photochemical quenching (NPQ). NPQ has been thought to resemble in vitro aggregation quenching of the major antenna complex, light harvesting complex of photosystem II (LHC‐II). Both processes are widely believed to involve a conformational change that creates a quenching centre of two neighbouring pigments within the complex. Using recombinant LHC‐II lacking the pigments implicated in quenching, we show that they have no particular role. Single crystals of LHC‐II emit strong, orientation‐dependent fluorescence with an emission maximum at 680 nm. The average lifetime of the main 680 nm crystal emission at 100 K is 1.31 ns, but only 0.39 ns for LHC‐II aggregates under identical conditions. The strong emission and comparatively long fluorescence lifetimes of single LHC‐II crystals indicate that the complex is unquenched, and that therefore the crystal structure shows the active, energy‐transmitting state of LHC‐II. We conclude that quenching of excitation energy in the light‐harvesting antenna is due to the molecular interaction with external pigments in vitro or other pigment–protein complexes such as PsbS in vivo, and does not require a conformational change within the complex.


Nature Communications | 2014

An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging

Dan Yu; William Clay Gustafson; Chun Han; Céline Lafaye; Marjolaine Noirclerc-Savoye; Woo Ping Ge; Desiree A. Thayer; Hai Huang; Thomas B. Kornberg; Antoine Royant; Lily Yeh Jan; Yuh N ung Jan; William A. Weiss; Xiaokun Shu

Infrared fluorescent proteins (IFPs) are ideal for in vivo imaging and monomeric versions of these proteins can be advantageous as protein tags or for sensor development. In contrast to GFP, which requires only molecular oxygen for chromophore maturation, phytochrome-derived IFPs incorporate biliverdin (BV) as the chromophore. However, BV varies in concentration in different cells and organisms. Here we engineered cells to express the heme oxygenase responsible for BV biosynthesys and a brighter monomeric IFP mutant (IFP2.0). Together, these tools improve the imaging capabilities of IFP2.0 compared to monomeric IFP1.4 and dimeric iRFP. By targeting IFP2.0 to the plasma membrane, we demonstrate robust labeling of neuronal processes in Drosophila larvae. We also show that this strategy improves the sensitivity when imaging brain tumors in whole mice. Our work shows promise in the application of IFPs for protein labeling and in vivo imaging.

Collaboration


Dive into the Antoine Royant's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Pebay-Peyroula

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ehud M. Landau

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Richard Neutze

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

David von Stetten

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

Marjolaine Noirclerc-Savoye

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Mueller-Dieckmann

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

Martin Weik

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge