Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antoinette C. van der Kuyl is active.

Publication


Featured researches published by Antoinette C. van der Kuyl.


Retrovirology | 2005

Retroviral superinfection resistance

Micha Nethe; Ben Berkhout; Antoinette C. van der Kuyl

The retroviral phenomenon of superinfection resistance (SIR) defines an interference mechanism that is established after primary infection, preventing the infected cell from being superinfected by a similar type of virus. This review describes our present understanding of the underlying mechanisms of SIR established by three characteristic retroviruses: Murine Leukaemia Virus (MuLV), Foamy Virus (FV), and Human Immunodeficiency Virus (HIV). In addition, SIR is discussed with respect to HIV superinfection of humans.MuLV resistant mice exhibit two genetic resistance traits related to SIR. The cellular Fv4 gene expresses an Env related protein that establishes resistance against MuLV infection. Another mouse gene (Fv1) mediates MuLV resistance by expression of a sequence that is distantly related to Gag and that blocks the viral infection after the reverse transcription step. FVs induce two distinct mechanisms of superinfection resistance. First, expression of the Env protein results in SIR, probably by occupancy of the cellular receptors for FV entry. Second, an increase in the concentration of the viral Bet (Between-env-and-LTR-1-and-2) protein reduces proviral FV gene expression by inhibition of the transcriptional activator protein Tas (Transactivator of spumaviruses). In contrast to SIR in FV and MuLV infection, the underlying mechanism of SIR in HIV-infected cells is poorly understood. CD4 receptor down-modulation, a major characteristic of HIV-infected cells, has been proposed to be the main mechanism of SIR against HIV, but data have been contradictory. Several recent studies report the occurrence of HIV superinfection in humans; an event associated with the generation of recombinant HIV strains and possibly with increased disease progression. The role of SIR in protecting patients from HIV superinfection has not been studied so far.The phenomenon of SIR may also be important in the protection of primates that are vaccinated with live attenuated simian immunodeficiency virus (SIV) against pathogenic SIV variants. As primate models of SIV infection closely resemble HIV infection, a better knowledge of SIR-induced mechanisms could contribute to the development of an HIV vaccine or other antiviral strategies.


Journal of Molecular Evolution | 1995

Phylogeny of African monkeys based upon mitochondrial 12S rRNA sequences

Antoinette C. van der Kuyl; Carla Kuiken; John T. Dekker; Jaap Goudsmit

The suborder Anthropoidea of the primates has traditionally been divided in three superfamilies: the Hominoidea (apes and humans) and the Cercopithecoidea (Old World monkeys), together comprising the infraorder Catarrhini, and the Ceboidea (New World monkeys) belonging to the infraorder Platyrrhini.We have sequenced an approximately 390-base-pair part of the mitochondrial 12S rRNA gene for 26 species of the major groups of African monkeys and apes and constructed an extensive phylogeny based upon DNA evidence. Not only is this phylogeny of great importance in classification of African guenons, but it also suggests rearrangements in traditional monkey taxonomy and evolution. Baboons and mandrills were found to be not directly related, while we could confirm that the known four superspecies of mangabeys do not form a monophyletic group, but should be separated into two genera, one clustering with baboons and the other with mandrills. Patas monkeys are clearly related to members of the genus Cercopithecus despite their divergence in build and habitat, while the talapoin falls outside the Cercopithecus clade (including the patas monkey).


Journal of Molecular Evolution | 1995

Nuclear counterparts of the cytoplasmic mitochondrial 12S rRNA gene: A problem of ancient DNA and molecular phylogenies

Antoinette C. van der Kuyl; Carla Kuiken; John T. Dekker; Wladimir R. K. Perizonius; Jaap Goudsmit

Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.


Retrovirology | 2012

HIV infection and HERV expression: a review

Antoinette C. van der Kuyl

The human genome contains multiple copies of retrovirus genomes known as endogenous retroviruses (ERVs) that have entered the germ-line at some point in evolution. Several of these proviruses have retained (partial) coding capacity, so that a number of viral proteins or even virus particles are expressed under various conditions. Human ERVs (HERVs) belong to the beta-, gamma-, or spuma- retrovirus groups. Endogenous delta- and lenti- viruses are notably absent in humans, although endogenous lentivirus genomes have been found in lower primates. Exogenous retroviruses that currently form a health threat to humans intriguingly belong to those absent groups. The best studied of the two infectious human retroviruses is the lentivirus human immunodeficiency virus (HIV) which has an overwhelming influence on its host by infecting cells of the immune system. One HIV-induced change is the induction of HERV transcription, often leading to induced HERV protein expression. This review will discuss the potential HIV-HERV interactions. Several studies have suggested that HERV proteins are unlikely to complement defective HIV virions, nor is HIV able to package HERV transcripts, probably due to low levels of sequence similarity. It is unclear whether the expression of HERVs has a negative, neutral, or positive influence on HIV-AIDS disease progression. A positive effect was recently reported by the specific expression of HERVs in chronically HIV-infected patients, which results in the presentation of HERV-derived peptides to CD8+ T-cells. These cytotoxic T-cells were not tolerant to HERV peptides, as would be expected for self-antigens, and consequently lysed the HIV-infected, HERV-presenting cells. This novel mechanism could control HIV replication and result in a low plasma viral load. The possibility of developing a vaccination strategy based on these HERV peptides will be discussed.The human genome contains multiple copies of retrovirus genomes known as endogenous retroviruses (ERVs) that have entered the germ-line at some point in evolution. Several of these proviruses have retained (partial) coding capacity, so that a number of viral proteins or even virus particles are expressed under various conditions. Human ERVs (HERVs) belong to the beta-, gamma-, or spuma- retrovirus groups. Endogenous delta- and lenti- viruses are notably absent in humans, although endogenous lentivirus genomes have been found in lower primates. Exogenous retroviruses that currently form a health threat to humans intriguingly belong to those absent groups. The best studied of the two infectious human retroviruses is the lentivirus human immunodeficiency virus (HIV) which has an overwhelming influence on its host by infecting cells of the immune system. One HIV-induced change is the induction of HERV transcription, often leading to induced HERV protein expression. This review will discuss the potential HIV-HERV interactions.Several studies have suggested that HERV proteins are unlikely to complement defective HIV virions, nor is HIV able to package HERV transcripts, probably due to low levels of sequence similarity. It is unclear whether the expression of HERVs has a negative, neutral, or positive influence on HIV-AIDS disease progression. A positive effect was recently reported by the specific expression of HERVs in chronically HIV-infected patients, which results in the presentation of HERV-derived peptides to CD8+ T-cells. These cytotoxic T-cells were not tolerant to HERV peptides, as would be expected for self-antigens, and consequently lysed the HIV-infected, HERV-presenting cells. This novel mechanism could control HIV replication and result in a low plasma viral load. The possibility of developing a vaccination strategy based on these HERV peptides will be discussed.


Retrovirology | 2007

Identifying HIV-1 dual infections

Antoinette C. van der Kuyl; Marion Cornelissen

Transmission of human immunodeficiency virus (HIV) is no exception to the phenomenon that a second, productive infection with another strain of the same virus is feasible. Experiments with RNA viruses have suggested that both coinfections (simultaneous infection with two strains of a virus) and superinfections (second infection after a specific immune response to the first infecting strain has developed) can result in increased fitness of the viral population. Concerns about dual infections with HIV are increasing. First, the frequent detection of superinfections seems to indicate that it will be difficult to develop a prophylactic vaccine. Second, HIV-1 superinfections have been associated with accelerated disease progression, although this is not true for all persons. In fact, superinfections have even been detected in persons controlling their HIV infections without antiretroviral therapy. Third, dual infections can give rise to recombinant viruses, which are increasingly found in the HIV-1 epidemic. Recombinants could have increased fitness over the parental strains, as in vitro models suggest, and could exhibit increased pathogenicity. Multiple drug resistant (MDR) strains could recombine to produce a pan-resistant, transmittable virus.We will describe in this review what is presently known about super- and re-infection among ambient viral infections, as well as the first cases of HIV-1 superinfection, including HIV-1 triple infections. The clinical implications, the impact of the immune system, and the effect of anti-retroviral therapy will be covered, as will as the timing of HIV superinfection. The methods used to detect HIV-1 dual infections will be discussed in detail. To increase the likelihood of detecting a dual HIV-1 infection, pre-selection of patients can be done by serotyping, heteroduplex mobility assays (HMA), counting the degenerate base codes in the HIV-1 genotyping sequence, or surveying unexpected increases in the viral load during follow-up. The actual demonstration of dual infections involves a great deal of additional research to completely characterize the patients viral quasispecies. The identification of a source partner would of course confirm the authenticity of the second infection.


Journal of General Virology | 2001

Identification of a novel type C porcine endogenous retrovirus: evidence that copy number of endogenous retroviruses increases during host inbreeding

Rui Mang; Jolanda Maas; Xianghong Chen; Jaap Goudsmit; Antoinette C. van der Kuyl

Different classes of porcine endogenous retroviruses (PERVs), which have the potential to infect humans during xenotransplantation, have been isolated from the pig genome. Because vertebrate genomes may contain numerous endogenous retrovirus sequences, the pig genome was examined for additional endogenous retroviruses, resulting in the isolation of a novel, complete endogenous retrovirus genome, designated PERV-E. The gag, pol and env genes of PERV-E are closely related to those of human endogenous retrovirus (HERV) 4-1, which belongs to the HERV-E family. Results of studies to determine the presence and copy number of PERVs demonstrated that PERV-E and PERV-A/B-like proviruses were present in all genomes tested, but that PERV-C was not found in two of the species examined, including wild boar. Multiple copies of PERVs could be found in each pig genome. Among all of the pig genomes tested, the wild boar genome had the lowest copy number of all PERVs, suggesting that the number of integrations of complete endogenous retroviruses is increased by inbreeding.


Retrovirology | 2012

The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus

Antoinette C. van der Kuyl; Ben Berkhout

Viruses often deviate from their hosts in the nucleotide composition of their genomes. The RNA genome of the lentivirus family of retroviruses, including human immunodeficiency virus (HIV), contains e.g. an above average percentage of adenine (A) nucleotides, while being extremely poor in cytosine (C). Such a deviant base composition has implications for the amino acids that are encoded by the open reading frames (ORFs), both in the requirement of specific tRNA species and in the preference for amino acids encoded by e.g. A-rich codons. Nucleotide composition does obviously affect the secondary and tertiary structure of the RNA genome and its biological functions, but it does also influence phylogenetic analysis of viral genome sequences, and possibly the activity of the integrated DNA provirus. Over time, the nucleotide composition of the HIV-1 genome is exceptionally conserved, varying by less than 1% per base position per isolate within either group M, N, or O during 1983–2009. This extreme stability of the nucleotide composition may possibly be achieved by negative selection, perhaps conserving semi-stable RNA secondary structure as reverse transcription would be significantly affected for a less A-rich genome where secondary structures are expected to be more stable and thus more difficult to unfold.This review will discuss all aspects of the lentiviral genome composition, both of the RNA and of its derived double-stranded DNA genome, with a focus on HIV-1, the nucleotide composition over time, the effects of artificially humanized codons as well as contributions of immune system pressure on HIV nucleotide bias.


PLOS ONE | 2007

Sialoadhesin (CD169) expression in CD14+ cells is upregulated early after HIV-1 infection and increases during disease progression

Antoinette C. van der Kuyl; Remco van den Burg; Fokla Zorgdrager; Ben Berkhout; Marion Cornelissen

Background Sialoadhesin (CD169, siglec-1 or Sn) is an activation marker seen on macrophages in chronic inflammatory diseases and in tumours, and on subsets of tissue macrophages. CD169 is highly expressed by macrophages present in AIDS-related Kaposis sarcoma lesions. It is also increased on blood monocytes of HIV-1 infected patients with a high viral load despite antiretroviral treatment. Methodology/Principal Findings We investigated expression of sialoadhesin in untreated HIV-1 and HHV-8 infected patients, by real-time PCR and FACS analysis to establish its expression in relation to infection and disease progression. Patients analysed were either HIV-1 seroconverters (n = 7), in the chronic phase of HIV-1 infection (n = 21), or in the AIDS stage (n = 58). Controls were HHV-8 infected, but otherwise healthy individuals (n = 20), and uninfected men having sex with men (n = 24). Sialoadhesin mRNA was significantly elevated after HIV-1, but not HHV-8 infection, and a further increase was seen in AIDS patients. Samples obtained around HIV-1 seroconversion indicated that sialoadhesin levels go up early in infection. FACS analysis of PBMCs showed that sialoadhesin protein was expressed at high levels by approximately 90% of CD14+ and CD14+CD16+cells of HIV-1+ patients with a concomitant 10-fold increase in sialoadhesin protein/cell compared with uninfected controls. Conclusions/Significance We have shown that sialoadhesin is induced to high levels on CD14+ cells early after HIV-1 infection in vivo. The phenotype of the cells is maintained during disease progression, suggesting that it could serve as a marker for infection and probably contributes to the severe dysregulation of the immune system seen in AIDS.


Clinical Infectious Diseases | 2012

HIV-1 Dual Infection Is Associated With Faster CD4+ T-Cell Decline in a Cohort of Men With Primary HIV Infection

Marion Cornelissen; Alexander O. Pasternak; Marlous L. Grijsen; Fokla Zorgdrager; Margreet Bakker; Petra Blom; Jan M. Prins; Suzanne Jurriaans; Antoinette C. van der Kuyl

BACKGROUND  In vitro, animal, and mathematical models suggest that human immunodeficiency virus (HIV) co- or superinfection would result in increased fitness of the pathogen and, possibly, increased virulence. However, in patients, the impact of dual HIV type 1 (HIV-1) infection on disease progression is unclear, because parameters relevant for disease progression have not been strictly analyzed. The objective of the present study is to analyze the effect of dual HIV-1 infections on disease progression in a well-defined cohort of men who have sex with men. METHODS  Between 2000 and 2009, 37 men who had primary infection with HIV-1 subtype B, no indication for immediate need of combination antiretroviral therapy (cART), and sufficient follow-up were characterized with regard to dual infection or single infection and to coreceptor use. Patients were followed to estimate the effect of these parameters on clinical disease progression, as defined by the rate of CD4(+) T-cell decline and the time to initiation of cART. RESULTS  Four patients presented with HIV-1 coinfection; 6 patients acquired HIV-1 superinfection, on average 8.5 months from their primary infection; and 27 patients remained infected with a single strain. Slopes of longitudinal CD4(+) T-cell counts and time-weighted changes from baseline were significantly steeper for patients with dual infection compared with patients with single infection. Multivariate analysis showed that the most important parameter associated with CD4(+) T-cell decline over time was dual infection (P = .001). Additionally, patients with HIV-1 coinfection had a significantly earlier start of cART (P < .0001). CONCLUSIONS  Dual HIV-1 infection is the main factor associated with CD4(+) T-cell decline in men who have untreated primary infection with HIV-1 subtype B.


PLOS ONE | 2010

Lack of Detection of XMRV in Seminal Plasma from HIV-1 Infected Men in The Netherlands

Marion Cornelissen; Fokla Zorgdrager; Petra Blom; Suzanne Jurriaans; Sjoerd Repping; Elisabeth van Leeuwen; Margreet Bakker; Ben Berkhout; Antoinette C. van der Kuyl

Background Xenotropic murine leukaemia virus-related virus (XMRV) is a recently discovered human gammaretrovirus with yet unknown prevalence and transmission route(s). Its presence in prostate stromal fibroblasts and prostatic secretions suggests that XMRV might be sexually transmitted. We chose to study a compartment closely connected to the prostate, a location where XMRV was detected in independent studies. Seminal plasma samples from HIV-1 infected men were examined as they have an increased probability of acquiring sexually transmitted pathogens. Methodology/Principal Findings We studied the prevalence of XMRV in 93 seminal plasma samples of 54 HIV-1 infected men living in The Netherlands with a nested PCR amplification specifically targeting the XMRV gag gene. As a control for the presence and integrity of retrovirus particles, HIV-1 was amplified from the same samples with a PCR amplification targeting the env gene of the virus, or HIV-1 was quantified with a real-time PCR amplifying part of the pol gene. Conclusions/Significance Although HIV-1 was amplified from 25% of the seminal plasma samples, no XMRV was detected, suggesting that either the prevalence of XMRV is very low in The Netherlands, or that XMRV is not naturally present in the seminal plasma.

Collaboration


Dive into the Antoinette C. van der Kuyl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Berkhout

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan M. Prins

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge