Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antoinette Hollestelle is active.

Publication


Featured researches published by Antoinette Hollestelle.


Nature Genetics | 2002

Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations

Hanne Meijers-Heijboer; Ans van den Ouweland; J.G.M. Klijn; Marijke Wasielewski; Anja de Snoo; Rogier A. Oldenburg; Antoinette Hollestelle; Mark M. J. Houben; Ellen Crepin; Monique van Veghel-Plandsoen; Fons Elstrodt; Cornelia van Duijn; C.C.M. Bartels; Carel Meijers; Mieke Schutte; Lesley McGuffog; Deborah Thompson; Douglas F. Easton; Nayanta Sodha; Sheila Seal; Rita Barfoot; Jon Mangion; Jenny Chang-Claude; Diana Eccles; Rosalind Eeles; D. Gareth Evans; Richard S. Houlston; Victoria Murday; Steven A. Narod; Tamara Peretz

Mutations in BRCA1 and BRCA2 confer a high risk of breast and ovarian cancer, but account for only a small fraction of breast cancer susceptibility. To find additional genes conferring susceptibility to breast cancer, we analyzed CHEK2 (also known as CHK2), which encodes a cell-cycle checkpoint kinase that is implicated in DNA repair processes involving BRCA1 and p53 (refs 3,4,5). We show that CHEK2*1100delC, a truncating variant that abrogates the kinase activity, has a frequency of 1.1% in healthy individuals. However, this variant is present in 5.1% of individuals with breast cancer from 718 families that do not carry mutations in BRCA1 or BRCA2 (P = 0.00000003), including 13.5% of individuals from families with male breast cancer (P = 0.00015). We estimate that the CHEK2*1100delC variant results in an approximately twofold increase of breast cancer risk in women and a tenfold increase of risk in men. By contrast, the variant confers no increased cancer risk in carriers of BRCA1 or BRCA2 mutations. This suggests that the biological mechanisms underlying the elevated risk of breast cancer in CHEK2 mutation carriers are already subverted in carriers of BRCA1 or BRCA2 mutations, which is consistent with participation of the encoded proteins in the same pathway.Mutations in BRCA1 and BRCA2 confer a high risk of breast and ovarian cancer1, but account for only a small fraction of breast cancer susceptibility1,2. To find additional genes conferring susceptibility to breast cancer, we analyzed CHEK2 (also known as CHK2), which encodes a cell-cycle checkpoint kinase that is implicated in DNA repair processes involving BRCA1 and p53 (refs 3,4,5). We show that CHEK2*1100delC, a truncating variant that abrogates the kinase activity6, has a frequency of 1.1% in healthy individuals. However, this variant is present in 5.1% of individuals with breast cancer from 718 families that do not carry mutations in BRCA1 or BRCA2 (P = 0.00000003), including 13.5% of individuals from families with male breast cancer (P = 0.00015). We estimate that the CHEK2*1100delC variant results in an approximately twofold increase of breast cancer risk in women and a tenfold increase of risk in men. By contrast, the variant confers no increased cancer risk in carriers of BRCA1 or BRCA2 mutations. This suggests that the biological mechanisms underlying the elevated risk of breast cancer in CHEK2 mutation carriers are already subverted in carriers of BRCA1 or BRCA2 mutations, which is consistent with participation of the encoded proteins in the same pathway.


Molecular Cancer Research | 2007

Phosphatidylinositol-3-OH Kinase or RAS Pathway Mutations in Human Breast Cancer Cell Lines

Antoinette Hollestelle; Fons Elstrodt; Jord H. A. Nagel; Wouter W. Kallemeijn; Mieke Schutte

Constitutive activation of the phosphatidylinositol-3-OH kinase (PI3K) and RAS signaling pathways are important events in tumor formation. This is illustrated by the frequent genetic alteration of several key players from these pathways in a wide variety of human cancers. Here, we report a detailed sequence analysis of the PTEN, PIK3CA, KRAS, HRAS, NRAS, and BRAF genes in a collection of 40 human breast cancer cell lines. We identified a surprisingly large proportion of cell lines with mutations in the PI3K or RAS pathways (54% and 25%, respectively), with mutants for each of the six genes. The PIK3CA, KRAS, and BRAF mutation spectra of the breast cancer cell lines were similar to those of colorectal cancers. Unlike in colorectal cancers, however, mutational activation of the PI3K pathway was mutually exclusive with mutational activation of the RAS pathway in all but 1 of 30 mutant breast cancer cell lines (P = 0.001). These results suggest that there is a fine distinction between the signaling activators and downstream effectors of the oncogenic PI3K and RAS pathways in breast epithelium and those in other tissues. (Mol Cancer Res 2007;5(2):195–201)


American Journal of Human Genetics | 2003

The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype.

Hanne Meijers-Heijboer; Juul T. Wijnen; Hans F. A. Vasen; Marijke Wasielewski; Anja Wagner; Antoinette Hollestelle; Fons Elstrodt; Renate van den Bos; Anja de Snoo; Grace Tjon A Fat; Cecile T.M. Brekelmans; Shantie Jagmohan; Patrick Franken; Paul Verkuijlen; Ans van den Ouweland; Pamela Chapman; Carli M. J. Tops; Gabriela Möslein; John Burn; Henry T. Lynch; J.G.M. Klijn; Riccardo Fodde; Mieke Schutte

Because of genetic heterogeneity, the identification of breast cancer-susceptibility genes has proven to be exceedingly difficult. Here, we define a new subset of families with breast cancer characterized by the presence of colorectal cancer cases. The 1100delC variant of the cell cycle checkpoint kinase CHEK2 gene was present in 18% of 55 families with hereditary breast and colorectal cancer (HBCC) as compared with 4% of 380 families with non-HBCC (P<.001), thus providing genetic evidence for the HBCC phenotype. The CHEK2 1100delC mutation was, however, not the major predisposing factor for the HBCC phenotype but appeared to act in synergy with another, as-yet-unknown susceptibility gene(s). The unequivocal definition of the HBCC phenotype opens new avenues to search for this putative HBCC-susceptibility gene.


Breast Cancer Research and Treatment | 2010

Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.

Antoinette Hollestelle; Jord H. A. Nagel; Marcel Smid; Suzanne Lam; Fons Elstrodt; Marijke Wasielewski; Ser Sue Ng; Pim J. French; Justine K. Peeters; Marieke J. Rozendaal; Muhammad Riaz; Daphne G. Koopman; Timo L.M. ten Hagen; Bertie de Leeuw; E.C. Zwarthoff; Amina Teunisse; Peter J. van der Spek; J.G.M. Klijn; Winand N.M. Dinjens; Stephen P. Ethier; Hans Clevers; Aart G. Jochemsen; Michael A. den Bakker; John A. Foekens; John W. M. Martens; Mieke Schutte

Breast cancer has for long been recognized as a highly diverse tumor group, but the underlying genetic basis has been elusive. Here, we report an extensive molecular characterization of a collection of 41 human breast cancer cell lines. Protein and gene expression analyses indicated that the collection of breast cancer cell lines has retained most, if not all, molecular characteristics that are typical for clinical breast cancers. Gene mutation analyses identified 146 oncogenic mutations among 27 well-known cancer genes, amounting to an average of 3.6 mutations per cell line. Mutations in genes from the p53, RB and PI3K tumor suppressor pathways were widespread among all breast cancer cell lines. Most important, we have identified two gene mutation profiles that are specifically associated with luminal-type and basal-type breast cancer cell lines. The luminal mutation profile involved E-cadherin and MAP2K4 gene mutations and amplifications of Cyclin D1, ERBB2 and HDM2, whereas the basal mutation profile involved BRCA1, RB1, RAS and BRAF gene mutations and deletions of p16 and p14ARF. These subtype-specific gene mutation profiles constitute a genetic basis for the heterogeneity observed among human breast cancers, providing clues for their underlying biology and providing guidance for targeted pharmacogenetic intervention in breast cancer patients.


Cancer Research | 2006

BRCA1 Mutation Analysis of 41 Human Breast Cancer Cell Lines Reveals Three New Deleterious Mutants

Fons Elstrodt; Antoinette Hollestelle; Jord H. A. Nagel; Michael A. Gorin; Marijke Wasielewski; Ans van den Ouweland; Sofia D. Merajver; Stephen P. Ethier; Mieke Schutte

Germ line mutations of the BRCA1 gene confer a high risk of breast cancer and ovarian cancer to female mutation carriers. The BRCA1 protein is involved in the regulation of DNA repair. How specific tumor-associated mutations affect the molecular function of BRCA1, however, awaits further elucidation. Cell lines that harbor BRCA1 gene mutations are invaluable tools for such functional studies. Up to now, the HCC1937 cell line was the only human breast cancer cell line with an identified BRCA1 mutation. In this study, we identified three other BRCA1 mutants from among 41 human breast cancer cell lines by sequencing of the complete coding sequence of BRCA1. Cell line MDA-MB-436 had the 5396 + 1G>A mutation in the splice donor site of exon 20. Cell line SUM149PT carried the 2288delT mutation and SUM1315MO2 carried the 185delAG mutation. All three mutations were accompanied by loss of the other BRCA1 allele. The 185delAG and 5396 + 1G>A mutations are both classified as pathogenic mutations. In contrast with wild-type cell lines, none of the BRCA1 mutants expressed nuclear BRCA1 proteins as detected with Ab-1 and Ab-2 anti-BRCA1 monoclonal antibodies. These three new human BRCA1 mutant cell lines thus seem to be representative breast cancer models that could aid in further unraveling of the function of BRCA1.


Breast Cancer Research | 2013

miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs

Muhammad Riaz; Marijn T.M. van Jaarsveld; Antoinette Hollestelle; Wendy Jc Prager-van der Smissen; Anouk A. J. Heine; Antonius W. M. Boersma; Jingjing Liu; Jean Helmijr; Bahar Ozturk; Marcel Smid; Erik A.C. Wiemer; John A. Foekens; John W. M. Martens

IntroductionBreast cancer is a genetically and phenotypically complex disease. To understand the role of miRNAs in this molecular complexity, we performed miRNA expression analysis in a cohort of molecularly well-characterized human breast cancer cell lines to identify miRNAs associated with the most common molecular subtypes and the most frequent genetic aberrations.MethodsUsing a microarray carrying LNA™ modified oligonucleotide capture probes), expression levels of 725 human miRNAs were measured in 51 breast cancer cell lines. Differential miRNA expression was explored by unsupervised cluster analysis and was then associated with the molecular subtypes and genetic aberrations commonly present in breast cancer.ResultsUnsupervised cluster analysis using the most variably expressed miRNAs divided the 51 breast cancer cell lines into a major and a minor cluster predominantly mirroring the luminal and basal intrinsic subdivision of breast cancer cell lines. One hundred and thirteen miRNAs were differentially expressed between these two main clusters. Forty miRNAs were differentially expressed between basal-like and normal-like/claudin-low cell lines. Within the luminal-group, 39 miRNAs were associated with ERBB2 overexpression and 24 with E-cadherin gene mutations, which are frequent in this subtype of breast cancer cell lines. In contrast, 31 miRNAs were associated with E-cadherin promoter hypermethylation, which, contrary to E-cadherin mutation, is exclusively observed in breast cancer cell lines that are not of luminal origin. Thirty miRNAs were associated with p16INK4 status while only a few miRNAs were associated with BRCA1, PIK3CA/PTEN and TP53 mutation status. Twelve miRNAs were associated with DNA copy number variation of the respective locus.ConclusionLuminal-basal and epithelial-mesenchymal associated miRNAs determine the subdivision of miRNA transcriptome of breast cancer cell lines. Specific sets of miRNAs were associated with ERBB2 overexpression, p16INK4a or E-cadherin mutation or E-cadherin methylation status, which implies that these miRNAs may contribute to the driver role of these genetic aberrations. Additionally, miRNAs, which are located in a genomic region showing recurrent genetic aberrations, may themselves play a driver role in breast carcinogenesis or contribute to a driver gene in their vicinity. In short, our study provides detailed molecular miRNA portraits of breast cancer cell lines, which can be exploited for functional studies of clinically important miRNAs.


Nature Genetics | 2012

Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk

Nick Orr; Alina Lemnrau; Rosie Cooke; Olivia Fletcher; Katarzyna Tomczyk; Michael P. Jones; Nichola Johnson; Christopher J. Lord; Costas Mitsopoulos; Marketa Zvelebil; Simon S. McDade; Gemma Buck; Christine Blancher; Alison H. Trainer; Paul A. James; Stig E. Bojesen; Susanne Bokmand; Heli Nevanlinna; Johanna Mattson; Eitan Friedman; Yael Laitman; Domenico Palli; Giovanna Masala; Ines Zanna; Laura Ottini; Giuseppe Giannini; Antoinette Hollestelle; Ans van den Ouweland; Srdjan Novakovic; Mateja Krajc

We conducted a genome-wide association study of male breast cancer comprising 823 cases and 2,795 controls of European ancestry, with validation in independent sample sets totaling 438 cases and 474 controls. A SNP in RAD51B at 14q24.1 was significantly associated with male breast cancer risk (P = 3.02 × 10−13; odds ratio (OR) = 1.57). We also refine association at 16q12.1 to a SNP within TOX3 (P = 3.87 × 10−15; OR = 1.50).


Human Mutation | 2014

Analysis of TP53 Mutation Status in Human Cancer Cell Lines: A Reassessment

Bernard Leroy; Luc Girard; Antoinette Hollestelle; John D. Minna; Adi F. Gazdar; Thierry Soussi

Tumor‐derived cell lines play an important role in the investigation of tumor biology and genetics. Across a wide array of studies, they have been tools of choice for the discovery of important genes involved in cancer and for the analysis of the cellular pathways that are impaired by diverse oncogenic events. They are also invaluable for screening novel anticancer drugs. The TP53 protein is a major component of multiple pathways that regulate cellular response to various types of stress. Therefore, TP53 status affects the phenotype of tumor cell lines profoundly and must be carefully ascertained for any experimental project. In the present review, we use the 2014 release of the UMD TP53 database to show that TP53 status is still controversial for numerous cell lines, including some widely used lines from the NCI‐60 panel. Our analysis clearly confirms that, despite numerous warnings, the misidentification of cell lines is still present as a silent and neglected issue, and that extreme care must be taken when determining the status of p53, because errors may lead to disastrous experimental interpretations. A novel compendium gathering the TP53 status of 2,500 cell lines has been made available (http://p53.fr). A stand‐alone application can be used to browse the database and extract pertinent information on cell lines and associated TP53 mutations. It will be updated regularly to minimize any scientific issues associated with the use of misidentified cell lines (http://p53.fr).


Journal of Clinical Oncology | 2016

Age- and Tumor Subtype–Specific Breast Cancer Risk Estimates for CHEK2*1100delC Carriers

Marjanka K. Schmidt; Frans B. L. Hogervorst; Richard van Hien; Sten Cornelissen; Annegien Broeks; Muriel A. Adank; Hanne Meijers; Quinten Waisfisz; Antoinette Hollestelle; Mieke Schutte; Ans van den Ouweland; Maartje J. Hooning; Irene L. Andrulis; Hoda Anton-Culver; Natalia Antonenkova; Antonis C. Antoniou; Volker Arndt; Marina Bermisheva; Natalia Bogdanova; Manjeet K. Bolla; Hiltrud Brauch; Hermann Brenner; Thomas Brüning; Barbara Burwinkel; Jenny Chang-Claude; Georgia Chenevix-Trench; Fergus J. Couch; Angela Cox; Simon S. Cross; Kamila Czene

PURPOSE CHEK2*1100delC is a well-established breast cancer risk variant that is most prevalent in European populations; however, there are limited data on risk of breast cancer by age and tumor subtype, which limits its usefulness in breast cancer risk prediction. We aimed to generate tumor subtype- and age-specific risk estimates by using data from the Breast Cancer Association Consortium, including 44,777 patients with breast cancer and 42,997 controls from 33 studies genotyped for CHEK2*1100delC. PATIENTS AND METHODS CHEK2*1100delC genotyping was mostly done by a custom Taqman assay. Breast cancer odds ratios (ORs) for CHEK2*1100delC carriers versus noncarriers were estimated by using logistic regression and adjusted for study (categorical) and age. Main analyses included patients with invasive breast cancer from population- and hospital-based studies. RESULTS Proportions of heterozygous CHEK2*1100delC carriers in controls, in patients with breast cancer from population- and hospital-based studies, and in patients with breast cancer from familial- and clinical genetics center-based studies were 0.5%, 1.3%, and 3.0%, respectively. The estimated OR for invasive breast cancer was 2.26 (95%CI, 1.90 to 2.69; P = 2.3 × 10(-20)). The OR was higher for estrogen receptor (ER)-positive disease (2.55 [95%CI, 2.10 to 3.10; P = 4.9 × 10(-21)]) than it was for ER-negative disease (1.32 [95%CI, 0.93 to 1.88; P = .12]; P interaction = 9.9 × 10(-4)). The OR significantly declined with attained age for breast cancer overall (P = .001) and for ER-positive tumors (P = .001). Estimated cumulative risks for development of ER-positive and ER-negative tumors by age 80 in CHEK2*1100delC carriers were 20% and 3%, respectively, compared with 9% and 2%, respectively, in the general population of the United Kingdom. CONCLUSION These CHEK2*1100delC breast cancer risk estimates provide a basis for incorporating CHEK2*1100delC into breast cancer risk prediction models and into guidelines for intensified screening and follow-up.


Cancer Research | 2009

Comment Re: MDA-MB-435 and M14 Cell Lines: Identical but not M14 Melanoma?

Antoinette Hollestelle; Mieke Schutte

To the Editor: In support of the recent article by Chambers ( [1][1]), we wish to share our data on the origin of the MDA-MB-435 and M14 cell lines. Chambers claims that it is most plausible that both cell lines represent MDA-MB-435 based on two X chromosomes in the MDA-MB-435 karyotype, whereas M14

Collaboration


Dive into the Antoinette Hollestelle's collaboration.

Top Co-Authors

Avatar

Mieke Schutte

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Maartje J. Hooning

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

John W.M. Martens

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ans van den Ouweland

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

John A. Foekens

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

John W. M. Martens

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Fiona Blows

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Penny Coulson

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge