Anton A. A. Smith
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anton A. A. Smith.
Macromolecular Bioscience | 2011
Marie-Helene Alves; Bettina E. B. Jensen; Anton A. A. Smith; Alexander N. Zelikin
Poly(vinyl alcohol), PVA, and physical hydrogels derived thereof have an excellent safety profile and a successful history of biomedical applications. However, these materials are hardly in the focus of biomedical research, largely due to poor opportunities in nano- and micro-scale design associated with PVA hydrogels in their current form. In this review we aim to demonstrate that with PVA, a (sub)molecular control over polymer chemistry translates into fine-tuned supramolecular association of chains and this, in turn, defines macroscopic properties of the material. This nano- to micro- to macro- translation of control is unique for PVA and can now be accomplished using modern tools of macromolecular design. We believe that this strategy affords functionalized PVA physical hydrogels which meet the demands of modern nanobiotechnology and have a potential to become an indispensable tool in the design of biomaterials.
Nature Nanotechnology | 2015
Jakob Bach Knudsen; Lei Liu; Anne Louise Bank Kodal; Mikael Madsen; Qiang Li; Jie Song; Johannes B. Woehrstein; Shelley Wickham; Maximilian T. Strauss; Florian Schueder; Jesper Vinther; Abhichart Krissanaprasit; Daniel Gudnason; Anton A. A. Smith; Ryosuke Ogaki; Alexander N. Zelikin; Flemming Besenbacher; Victoria Birkedal; Peng Yin; William M. Shih; Ralf Jungmann; Mingdong Dong; Kurt V. Gothelf
Synthetic polymers are ubiquitous in the modern world, but our ability to exert control over the molecular conformation of individual polymers is very limited. In particular, although the programmable self-assembly of oligonucleotides and proteins into artificial nanostructures has been demonstrated, we currently lack the tools to handle other types of synthetic polymers individually and thus the ability to utilize and study their single-molecule properties. Here we show that synthetic polymer wires containing short oligonucleotides that extend from each repeat can be made to assemble into arbitrary routings. The wires, which can be more than 200 nm in length, are soft and bendable, and the DNA strands allow individual polymers to self-assemble into predesigned routings on both two- and three-dimensional DNA origami templates. The polymers are conjugated and potentially conducting, and could therefore be used to create molecular-scale electronic or optical wires in arbitrary geometries.
ACS Applied Materials & Interfaces | 2013
Martin E. Lynge; Marie Baekgaard Laursen; Leticia Hosta-Rigau; Bettina E. B. Jensen; Ryosuke Ogaki; Anton A. A. Smith; Alexander N. Zelikin; Brigitte Städler
The ex vivo growth of implantable hepatic or cardiac tissue remains a challenge and novel approaches are highly sought after. We report an approach to use liposomes embedded within multilayered films as drug deposits to deliver active cargo to adherent cells. We verify and characterize the assembly of poly(l-lysine) (PLL)/alginate, PLL/poly(l-glutamic acid), PLL/poly(methacrylic acid) (PMA), and PLL/cholesterol-modified PMA (PMAc) films, and assess the myoblast and hepatocyte adhesion to these coatings using different numbers of polyelectrolyte layers. The assembly of liposome-containing multilayered coatings is monitored by QCM-D, and the films are visualized using microscopy. The myoblast and hepatocyte adhesion to these films using PLL/PMAc or poly(styrenesulfonate) (PSS)/poly(allyl amine hydrochloride) (PAH) as capping layers is evaluated. Finally, the uptake of fluorescent lipids from the surface by these cells is demonstrated and compared. The activity of this liposome-containing coating is confirmed for both cell lines by trapping the small cytotoxic compound thiocoraline within the liposomes. It is shown that the biological response depends on the number of capping layers, and is different for the two cell lines when the compound is delivered from the surface, while it is similar when administered from solution. Taken together, we demonstrate the potential of liposomes as drug deposits in multilayered films for surface-mediated drug delivery.
Chemical Communications | 2013
Mille B. L. Kryger; Benjamin M. Wohl; Anton A. A. Smith; Alexander N. Zelikin
Chemi-enzymatic synthesis of ribavirin acrylate and subsequent RAFT co-polymerization with acrylic acid afforded a formulation of a broad spectrum antiviral drug which avoids accumulation in erythrocytes, the origin of the main side effect of ribavirin. In cultured macrophages the macromolecular prodrugs exhibited decreased toxicity while maintaining the anti-inflammatory action of ribavirin.
Polymer Chemistry | 2012
Anton A. A. Smith; Thomas Hussmann; Joseph Elich; Almar Postma; Marie-Helene Alves; Alexander N. Zelikin
Reversible Addition–Fragmentation chain Transfer polymerization (RAFT) is employed herein to obtain the first example of poly(vinyl alcohol), PVA, with controlled molecular weight and terminal amine groups thus presenting a flexible tool for materials design and bioconjugation. Furthermore, we demonstrate that RAFT control can be used to facilitate syndiotactic chain propagation and obtain PVA with the highest reported content of syndiotactic dyad (∼78%).
Langmuir | 2013
Betina Fejerskov; Anton A. A. Smith; Bettina E. B. Jensen; Thomas Hussmann; Alexander N. Zelikin
Hydrogel biomaterials based on poly(vinyl alcohol), PVA, have an extensive history of biomedical applications, yet in their current form suffer from significant shortcomings, such as a lack of mechanism of biodegradation and poor opportunities in controlled drug release. We investigate physical hydrogels of PVA as surface-adhered materials and present biodegradable matrices equipped with innovative tools in substrate-mediated drug release. Toward the final goal, PVA chains with narrow polydispersities (1.1-1.2) and molecular weights of 5, 10, and 28 kDa are synthesized via controlled radical polymerization (RAFT). These molecular weights are shown to be suitably high to afford robust hydrogel matrices and at the same time suitably low to allow gradual erosion of the hydrogels with kinetics of degradation controlled via polymer macromolecular characteristics. For opportunities in controlled drug release, hydrogels are equipped with enzymatic cargo to achieve an in situ conversion of externally added prodrug into a final product, thus giving rise to surface-adhered enzymatic microreactors. Hydrogel-mediated enzymatic activity was investigated as a function of polymer molecular weight and concentration of solution taken for assembly of hydrogels. Taken together, we present, to the best of our knowledge, the first example of bioresorbable physical hydrogel based on PVA with engineered opportunities in substrate-mediated enzymatic activity and envisioned utility in surface-mediated drug delivery and tissue engineering.
Advanced Healthcare Materials | 2015
Camilla Frich Riber; Anton A. A. Smith; Alexander N. Zelikin
The ultimate goal of controlled, intracellulardrug delivery is to get the drug to the target cell without spilling the contents in transit and then release the entire payload upon cell entry. One of the most powerful platforms to achieve this relies on the intracellular disulfide reshuffling as a trigger for drug release form the engineered prodrugs. However, utility of disulfide reshuffling for drug release is naturally applicable only to the thiol containing molecules-ultimately leaving nearly all commercialized drugs beyond the scope of this platform. This is a drastic limitation. A cunning new tool of organic chemistry is fast entering the mainstream of prodrug design: the self-immolative linkers. This platform allows overcoming the natural chemical barrier and makes it possible to link virtually any drug to its carrier via a disulfide bond and engineer a specific intracellular release. It is a game-changing accomplishment of modern organic chemistry. The scope and limitations of this novel opportunity for medicinal chemistry and nanomedicine are outlined.
Small | 2013
Siow-Feng Chong; Anton A. A. Smith; Alexander N. Zelikin
In this work, bioconjugation techniques are developed to achieve peptide functionalization of poly(vinyl alcohol), PVA, as both a polymer in solution and within microstructured physical hydrogels, in both cases under physiological conditions. PVA is unique in that it is one of very few polymers with excellent biocompatibility and safety and has FDA approval for clinical uses in humans. However, decades of development have documented only scant opportunities in bioconjugation with PVA. As such, materials derived thereof fail to answer the call for functional biomaterials for advanced cell culture and tissue engineering applications. To address these limitations, PVA is synthesized with terminal thiol groups and conjugated with thiolated peptides using PVA in solution. Further, microstructured, surface-adhered PVA physical hydrogels are assembled, the available conjugation sites within the hydrogels are quantified, and quantitative kinetic data are collected on peptide conjugation to the hydrogels. The success of bioconjugation in the gel phase is quantified through the use of a cell-adhesive peptide and visualization of cell adhesion on PVA hydrogels as cell culture substrates. Taken together, the presented data establish a novel paradigm in bioconjugation and functionalization of PVA physical hydrogels. Coupled with an excellent safety profile of PVA, these results deliver a superior biomaterial for diverse biomedical applications.
Advanced Healthcare Materials | 2015
Benjamin M. Wohl; Anton A. A. Smith; Kaja Zuwala; Jesper Melchjorsen; Martin Tolstrup; Alexander N. Zelikin
Efficacious, potent, and at the same time nontoxic macromolecular prodrugs of ribavirin are designed taking advantage over prodrug activation by the intracellular milieu. Activity of these prodrugs is illustrated in the cells hosting hepatitis C virus replication and also in the cells implicated in the inflammatory response to the viral infection.
Macromolecular Bioscience | 2014
Mille B. L. Kryger; Anton A. A. Smith; Benjamin M. Wohl; Alexander N. Zelikin
Ribavirin (RBV)-containing polymers are synthesized based on poly(N-vinylpyrrolidone) and poly(acrylic acid), two polymers with extensive characterization in biomedicine. The copolymers are shown to exhibit a minor to negligible degree of association with erythrocytes, thus effectively eliminating the origin of the main side effects of RBV. The therapeutic benefit of macromolecular RBV prodrugs is illustrated by matched efficacy in suppressing production of nitric oxide by stimulated cultured macrophages as compared to pristine RBV with no associated cytotoxicity, which is in stark contrast to an RBV-based treatment which results in a significant decrease in cell viability. These results contribute to the development of antiviral polymer therapeutics and delivery of RBV in particular.
Collaboration
Dive into the Anton A. A. Smith's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs