Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anton A. Komar is active.

Publication


Featured researches published by Anton A. Komar.


Molecular and Cellular Biology | 2003

The Transformation Suppressor Pdcd4 Is a Novel Eukaryotic Translation Initiation Factor 4A Binding Protein That Inhibits Translation

Hsin-Sheng Yang; Aaron P. Jansen; Anton A. Komar; Xiaojing Zheng; William C. Merrick; Sylvain V. Costes; Stephen J. Lockett; Nahum Sonenberg; Nancy H. Colburn

ABSTRACT Pdcd4 is a novel transformation suppressor that inhibits tumor promoter-induced neoplastic transformation and the activation of AP-1-dependent transcription required for transformation. A yeast two-hybrid analysis revealed that Pdcd4 associates with the eukaryotic translation initiation factors eIF4AI and eIF4AII. Immunofluorescent confocal microscopy showed that Pdcd4 colocalizes with eIF4A in the cytoplasm. eIF4A is an ATP-dependent RNA helicase needed to unwind 5′ mRNA secondary structure. Recombinant Pdcd4 specifically inhibited the helicase activity of eIF4A and eIF4F. In vivo translation assays showed that Pdcd4 inhibited cap-dependent but not internal ribosome entry site (IRES)-dependent translation. In contrast, Pdcd4D418A, a mutant inactivated for binding to eIF4A, failed to inhibit cap-dependent or IRES-dependent translation or AP-1 transactivation. Recombinant Pdcd4 prevented eIF4A from binding to the C-terminal region of eIF4G (amino acids 1040 to 1560) but not to the middle region of eIF4G(amino acids 635 to 1039). In addition, both Pdcd4 and Pdcd4D418A bound to the middle region of eIF4G. The mechanism by which Pdcd4 inhibits translation thus appears to involve inhibition of eIF4A helicase, interference with eIF4A association-dissociation from eIF4G, and inhibition of eIF4A binding to the C-terminal domain of eIF4G. Pdcd4 binding to eIF4A is linked to its transformation-suppressing activity, as Pdcd4-eIF4A binding and consequent inhibition of translation are required for Pdcd4 transrepression of AP-1.


FEBS Letters | 1999

Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation

Anton A. Komar; Thierry Lesnik; Claude Reiss

To investigate the possible influence of the local rates of translation on protein folding, 16 consecutive rare (in Escherichia coli) codons in the chloramphenicol acetyltransferase (CAT) gene have been replaced by frequent ones. Site‐directed silent mutagenesis reduced the pauses in translation of CAT in E. coli S30 extract cell‐free system and led to the acceleration of the overall rate of CAT protein synthesis. At the same time, the silently mutated protein (with unaltered protein sequence) synthesized in the E. coli S30 extract system was shown to possess 20% lower specific activity. The data suggest that kinetics of protein translation can affect the in vivo protein‐folding pathway, leading to increased levels of protein misfolding.


Journal of Biological Chemistry | 2005

Internal Ribosome Entry Sites in Cellular mRNAs: Mystery of Their Existence

Anton A. Komar; Maria Hatzoglou

Although studies on viral gene expression were essential for the discovery of internal ribosome entry sites (IRESs), it is becoming increasingly clear that IRES activities are present in a significant number of cellular mRNAs. Remarkably, many of these IRES elements initiate translation of mRNAs encoding proteins that protect cells from stress (when the translation of the vast majority of cellular mRNAs is significantly impaired). The purpose of this review is to summarize the progress on the discovery and function of cellular IRESs. Recent findings on the structures of these IRESs and specifically regulation of their activity during nutritional stress, differentiation, and mitosis will be discussed.


Cell Cycle | 2011

Cellular IRES-mediated translation: The war of ITAFs in pathophysiological states

Anton A. Komar; Maria Hatzoglou

Translation of cellular mRNAs via initiation at Internal Ribosome Entry Sites (IRESs) has received increased attention during recent years due to its emerging significance for many physiological and pathological stress conditions in eukaryotic cells. Expression of genes bearing IRES elements in their mRNAs is controlled by multiple molecular mechanisms, with IRES-mediated translation favored under conditions when cap-dependent translation is compromised. In this review, we discuss recent advances in the field and future directions that may bring us closer to understanding the complex mechanisms that guide cellular IRES-mediated expression. We present examples in which the competitive action of IRES-transacting factors (ITAFs) plays a pivotal role in IRES-mediated translation and thereby controls cell-fate decisions leading to either pro-survival stress adaptation or cell death.


Trends in Biochemical Sciences | 2009

A pause for thought along the co-translational folding pathway

Anton A. Komar

A unifying concept that combines the basic features governing self-organization of proteins into complex three-dimensional structures in vitro and in vivo is still lacking. Recent experimental results and theoretical in silico modeling studies provide evidence showing that mRNA might contain an additional layer of information, beyond the amino acid sequence, that fine-tunes in vivo protein folding, which is largely believed to start as a co-translational process. These findings indicate that translation kinetics might direct the co-translational folding pathway and that translational pausing at rare codons might provide a time delay to enable independent and sequential folding of the defined portions of the nascent polypeptide emerging from the ribosome.


Journal of Biological Chemistry | 1999

Structural Characterization of Saccharomyces cerevisiae Prion-like Protein Ure2

Carine Thual; Anton A. Komar; Luc Bousset; Eric Fernandez‐Bellot; Christophe Cullin; Ronald Melki

Sacchromyces cerevisiae prion-like protein Ure2 was expressed in Escherichia coli and was purified to homogeneity. We show here that Ure2p is a soluble protein that can assemble into fibers that are similar to the fibers observed in the case of PrP in its scrapie prion filaments form or that form on Sup35 self-assembly. Ure2p self-assembly is a cooperative process where one can distinguish a lag phase followed by an elongation phase preceding a plateau. A combination of size exclusion chromatography, sedimentation velocity, and electron microscopy demonstrates that the soluble form of Ure2p consists at least of three forms of the protein as follows: a monomeric, dimeric, and tetrameric form whose abundance is concentration-dependent. By the use of limited proteolysis, intrinsic fluorescence, and circular dichroism measurements, we bring strong evidence for the existence of at least two structural domains in Ure2p molecules. Indeed, Ure2p NH2-terminal region is found poorly structured, whereas its COOH-terminal domain appears to be compactly folded. Finally, we show that only slight conformational changes accompany Ure2p assembly into insoluble high molecular weight oligomers. These changes essentially affect the COOH-terminal part of the molecule. The properties of Ure2p are compared in the discussion to that of other prion-like proteins such as Sup35 and mammalian prion protein PrP.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma

Jared J. Gartner; Stephen C. J. Parker; Todd D. Prickett; Ken Dutton-Regester; Michael L. Stitzel; Jimmy C. Lin; Sean Davis; Vijaya L. Simhadri; Sujata Jha; Nobuko Katagiri; Valer Gotea; Jamie K. Teer; Xiaomu Wei; Mario A. Morken; Umesh Bhanot; Guo Chen; Laura Elnitski; Michael A. Davies; Jeffrey E. Gershenwald; Hannah Carter; Rachel Karchin; William H. Robinson; Steven E. Robinson; Steven A. Rosenberg; Francis S. Collins; Giovanni Parmigiani; Anton A. Komar; Chava Kimchi-Sarfaty; Nicholas K. Hayward; Elliott H. Margulies

Synonymous mutations, which do not alter the protein sequence, have been shown to affect protein function [Sauna ZE, Kimchi-Sarfaty C (2011) Nat Rev Genet 12(10):683–691]. However, synonymous mutations are rarely investigated in the cancer genomics field. We used whole-genome and -exome sequencing to identify somatic mutations in 29 melanoma samples. Validation of one synonymous somatic mutation in BCL2L12 in 285 samples identified 12 cases that harbored the recurrent F17F mutation. This mutation led to increased BCL2L12 mRNA and protein levels because of differential targeting of WT and mutant BCL2L12 by hsa-miR-671–5p. Protein made from mutant BCL2L12 transcript bound p53, inhibited UV-induced apoptosis more efficiently than WT BCL2L12, and reduced endogenous p53 target gene transcription. This report shows selection of a recurrent somatic synonymous mutation in cancer. Our data indicate that silent alterations have a role to play in human cancer, emphasizing the importance of their investigation in future cancer genome studies.


Molecular and Cellular Biology | 2009

The hnRNA-Binding Proteins hnRNP L and PTB Are Required for Efficient Translation of the Cat-1 Arginine/Lysine Transporter mRNA during Amino Acid Starvation

Mithu Majumder; Ibrahim Yaman; Francesca Gaccioli; Vladimir V. Zeenko; Chuanping Wang; Mark G. Caprara; Richard C. Venema; Anton A. Komar; Martin D. Snider; Maria Hatzoglou

ABSTRACT The response to amino acid starvation involves the global decrease of protein synthesis and an increase in the translation of some mRNAs that contain an internal ribosome entry site (IRES). It was previously shown that translation of the mRNA for the arginine/lysine amino acid transporter Cat-1 increases during amino acid starvation via a mechanism that utilizes an IRES in the 5′ untranslated region of the Cat-1 mRNA. It is shown here that polypyrimidine tract binding protein (PTB) and an hnRNA binding protein, heterogeneous nuclear ribonucleoprotein L (hnRNP L), promote the efficient translation of Cat-1 mRNA during amino acid starvation. Association of both proteins with Cat-1 mRNA increased during starvation with kinetics that paralleled that of IRES activation, although the levels and subcellular distribution of the proteins were unchanged. The sequence CUUUCU within the Cat-1 IRES was important for PTB binding and for the induction of translation during amino acid starvation. Binding of hnRNP L to the IRES or the Cat-1 mRNA in vivo was independent of PTB binding but was not sufficient to increase IRES activity or Cat-1 mRNA translation during amino acid starvation. In contrast, binding of PTB to the Cat-1 mRNA in vivo required hnRNP L. A wider role of hnRNP L in mRNA translation was suggested by the decrease of global protein synthesis in cells with reduced hnRNP L levels. It is proposed that PTB and hnRNP L are positive regulators of Cat-1 mRNA translation via the IRES under stress conditions that cause a global decrease of protein synthesis.


The EMBO Journal | 2003

Internal initiation drives the synthesis of Ure2 protein lacking the prion domain and affects [URE3] propagation in yeast cells

Anton A. Komar; Thierry Lesnik; Christophe Cullin; William C. Merrick; Hans Trachsel; Michael Altmann

The [URE3] phenotype in Saccharomyces cerevisiae is caused by the inactive, altered (prion) form of the Ure2 protein (Ure2p), a regulator of nitrogen catabolism. Ure2p has two functional domains: an N‐terminal domain necessary and sufficient for prion propagation and a C‐terminal domain responsible for nitrogen regulation. We show here that the mRNA encoding Ure2p possesses an IRES (internal ribosome entry site). Internal initiation leads to the synthesis of an N‐terminally truncated active form of the protein (amino acids 94–354) lacking the prion‐forming domain. Expression of the truncated Ure2p form (94–354) mediated by the IRES element cures yeast cells of the [URE3] phenotype. We assume that the balance between the full‐length and truncated (94–354) Ure2p forms plays an important role in yeast cell physiology and differentiation.


Science | 2015

Cotranslational protein folding on the ribosome monitored in real time

Wolf Holtkamp; Goran Kokic; Marcus Jäger; Joerg Mittelstaet; Anton A. Komar; Marina V. Rodnina

Proteins shape up in the ribosome Proteins consist of linear chains of amino acids. These chains must fold into complex three-dimensional shapes to become functional. Holtkamp et al. “watched” how a small helical protein folds as it is being synthesized by the ribosome. The lengthening polypeptide passes out through the ribosome exit tunnel where folding starts. The initially compact structure quickly rearranges into a native three-dimensional structure as the polypeptide emerges from the tunnel. Science, this issue p. 1104 A small protein folds into a non-native form as it is synthesized on the ribosome before adopting its native shape. Protein domains can fold into stable tertiary structures while they are synthesized on the ribosome. We used a high-performance, reconstituted in vitro translation system to investigate the folding of a small five-helix protein domain—the N-terminal domain of Escherichia coli N5-glutamine methyltransferase HemK—in real time. Our observations show that cotranslational folding of the protein, which folds autonomously and rapidly in solution, proceeds through a compact, non-native conformation that forms within the peptide tunnel of the ribosome. The compact state rearranges into a native-like structure immediately after the full domain sequence has emerged from the ribosome. Both folding transitions are rate-limited by translation, allowing for quasi-equilibrium sampling of the conformational space restricted by the ribosome. Cotranslational folding may be typical of small, intrinsically rapidly folding protein domains.

Collaboration


Dive into the Anton A. Komar's collaboration.

Top Co-Authors

Avatar

William C. Merrick

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Maria Hatzoglou

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Chava Kimchi-Sarfaty

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vijaya L. Simhadri

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Zuben E. Sauna

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Amber A. Bentley

Cleveland State University

View shared research outputs
Top Co-Authors

Avatar

Sujata Jha

Cleveland State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuko Hamasaki-Katagiri

Center for Biologics Evaluation and Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge