Anton A. Toutov
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anton A. Toutov.
Nature | 2015
Anton A. Toutov; Wen-Bo Liu; Kerry Betz; Alexey Fedorov; Brian M. Stoltz; Robert H. Grubbs
Heteroaromatic compounds containing carbon–silicon (C–Si) bonds are of great interest in the fields of organic electronics and photonics, drug discovery, nuclear medicine and complex molecule synthesis, because these compounds have very useful physicochemical properties. Many of the methods now used to construct heteroaromatic C–Si bonds involve stoichiometric reactions between heteroaryl organometallic species and silicon electrophiles or direct, transition-metal-catalysed intermolecular carbon–hydrogen (C–H) silylation using rhodium or iridium complexes in the presence of excess hydrogen acceptors. Both approaches are useful, but their limitations include functional group incompatibility, narrow scope of application, high cost and low availability of the catalysts, and unproven scalability. For this reason, a new and general catalytic approach to heteroaromatic C–Si bond construction that avoids such limitations is highly desirable. Here we report an example of cross-dehydrogenative heteroaromatic C–H functionalization catalysed by an Earth-abundant alkali metal species. We found that readily available and inexpensive potassium tert-butoxide catalyses the direct silylation of aromatic heterocycles with hydrosilanes, furnishing heteroarylsilanes in a single step. The silylation proceeds under mild conditions, in the absence of hydrogen acceptors, ligands or additives, and is scalable to greater than 100 grams under optionally solvent-free conditions. Substrate classes that are difficult to activate with precious metal catalysts are silylated in good yield and with excellent regioselectivity. The derived heteroarylsilane products readily engage in versatile transformations enabling new synthetic strategies for heteroaromatic elaboration, and are useful in their own right in pharmaceutical and materials science applications.
Chemical Science | 2013
Alexey Fedorov; Anton A. Toutov; Nicholas A. Swisher; Robert H. Grubbs
We report a transition-metal-free protocol for the efficient reductive cleavage of diaryl and aryl alkyl ethers. The combination of triethylsilane with common bases forms an unusually powerful reductive couple that regioselectively ruptures lignin- and coal-related C–O bonds in aromatic ethers. Interestingly, with certain bases and temperature regimes ortho-directed C–H silylation efficiently competes with the latter process. However, careful tuning of the reactions conditions allows for the selective reductive cleavage of lignin model compounds to their corresponding phenolic and aromatic constituents.
Journal of the American Chemical Society | 2017
Wen-Bo Liu; David P. Schuman; Yun-Fang Yang; Anton A. Toutov; Yong Liang; Hendrik F. T. Klare; Nasri Nesnas; Martin Oestreich; Donna G. Blackmond; Scott C. Virgil; Shibdas Banerjee; Richard N. Zare; Robert H. Grubbs; K. N. Houk; Brian M. Stoltz
We recently reported a new method for the direct dehydrogenative C-H silylation of heteroaromatics utilizing Earth-abundant potassium tert-butoxide. Herein we report a systematic experimental and computational mechanistic investigation of this transformation. Our experimental results are consistent with a radical chain mechanism. A trialkylsilyl radical may be initially generated by homolytic cleavage of a weakened Si-H bond of a hypercoordinated silicon species as detected by IR, or by traces of oxygen which can generate a reactive peroxide by reaction with [KOt-Bu]4 as indicated by density functional theory (DFT) calculations. Radical clock and kinetic isotope experiments support a mechanism in which the C-Si bond is formed through silyl radical addition to the heterocycle followed by subsequent β-hydrogen scission. DFT calculations reveal a reasonable energy profile for a radical mechanism and support the experimentally observed regioselectivity. The silylation reaction is shown to be reversible, with an equilibrium favoring products due to the generation of H2 gas. In situ NMR experiments with deuterated substrates show that H2 is formed by a cross-dehydrogenative mechanism. The stereochemical course at the silicon center was investigated utilizing a 2H-labeled silolane probe; complete scrambling at the silicon center was observed, consistent with a number of possible radical intermediates or hypercoordinate silicates.
Journal of the American Chemical Society | 2017
Shibdas Banerjee; Yun-Fang Yang; Ian D. Jenkins; Yong Liang; Anton A. Toutov; Wen-Bo Liu; David P. Schuman; Robert H. Grubbs; Brian M. Stoltz; Elizabeth H. Krenske; K. N. Houk; Richard N. Zare
Exploiting C-H bond activation is difficult, although some success has been achieved using precious metal catalysts. Recently, it was reported that C-H bonds in aromatic heterocycles were converted to C-Si bonds by reaction with hydrosilanes under the catalytic action of potassium tert-butoxide alone. The use of Earth-abundant potassium cation as a catalyst for C-H bond functionalization seems to be without precedent, and no mechanism for the process was established. Using ambient ionization mass spectrometry, we are able to identify crucial ionic intermediates present during the C-H silylation reaction. We propose a plausible catalytic cycle, which involves a pentacoordinate silicon intermediate consisting of silane reagent, substrate, and the tert-butoxide catalyst. Heterolysis of the Si-H bond, deprotonation of the heteroarene, addition of the heteroarene carbanion to the silyl ether, and dissociation of tert-butoxide from silicon lead to the silylated heteroarene product. The steps of the silylation mechanism may follow either an ionic route involving K+ and tBuO- ions or a neutral heterolytic route involving the [KOtBu]4 tetramer. Both mechanisms are consistent with the ionic intermediates detected experimentally. We also present reasons why KOtBu is an active catalyst whereas sodium tert-butoxide and lithium tert-butoxide are not, and we explain the relative reactivities of different (hetero)arenes in the silylation reaction. The unique role of KOtBu is traced, in part, to the stabilization of crucial intermediates through cation-π interactions.
Nature Protocols | 2015
Anton A. Toutov; Wen-Bo Liu; Kerry Betz; Brian M. Stoltz; Robert H. Grubbs
This protocol describes a method for the direct silylation of the carbon–hydrogen (C–H) bond of aromatic heterocycles using inexpensive and abundant potassium tert-butoxide (KOt-Bu) as the catalyst. This catalytic cross-dehydrogenative coupling of simple hydrosilanes and various electron-rich aromatic heterocycles enables the synthesis of valuable silylated heteroarenes. The products thus obtained can be used as versatile intermediates, which facilitate the divergent synthesis of pharmaceutically relevant compound libraries from a single Si-containing building block. Moreover, a variety of complex Si-containing motifs, such as those produced by this protocol, are being actively investigated as next-generation therapeutic agents, because they can have improved pharmacokinetic properties compared with the original all-carbon drug molecules. Current competing methods for C–H bond silylation tend to be incompatible with functionalities, such as Lewis-basic heterocycles, that are often found in pharmaceutical substances; this leaves de novo synthesis as the principal strategy for preparation of the target sila-drug analog. Moreover, competing methods tend to be limited in the scope of hydrosilane that can be used, which restricts the breadth of silicon-containing small molecules that can be accessed. The approach outlined in this protocol enables the chemoselective and regioselective late-stage silylation of small heterocycles, including drugs and drug derivatives, with a broad array of hydrosilanes in the absence of precious metal catalysts, stoichiometric reagents, sacrificial hydrogen acceptors or high temperatures. Moreover, H2 is the only by-product generated. The procedure normally requires 48–75 h to be completed.
Journal of the American Chemical Society | 2017
Anton A. Toutov; Kerry Betz; David P. Schuman; Wen-Bo Liu; Alexey Fedorov; Brian M. Stoltz; Robert H. Grubbs
Disclosed is a mild, scalable, and chemoselective catalytic cross-dehydrogenative C-H bond functionalization protocol for the construction of C(sp)-Si bonds in a single step. The scope of the alkyne and hydrosilane partners is substantial, providing an entry point into various organosilane building blocks and additionally enabling the discovery of a number of novel synthetic strategies. Remarkably, the optimal catalysts are NaOH and KOH.
Organic Letters | 2016
Anton A. Toutov; Kerry Betz; Michael C. Haibach; Andrew M. Romine; Robert H. Grubbs
Archive | 2013
Robert H. Grubbs; Alexey Fedorov; Anton A. Toutov; Kerry Betz
Nature Energy | 2017
Anton A. Toutov; Mike Salata; Alexey Fedorov; Yun-Fang Yang; Yong Liang; Romain Cariou; Kerry Betz; Erik P. A. Couzijn; John W. Shabaker; K. N. Houk; Robert H. Grubbs
Organic Syntheses | 2016
Anton A. Toutov; Wen-Bo Liu; Brian M. Stoltz; Robert H. Grubbs