Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anton E. Bowden is active.

Publication


Featured researches published by Anton E. Bowden.


Journal of The Mechanical Behavior of Biomedical Materials | 2013

The lumbar supraspinous ligament demonstrates increased material stiffness and strength on its ventral aspect

Daniel Robertson; R. Willardson; D. Parajuli; A. Cannon; Anton E. Bowden

The present work represents the first reported quantified anisotropic, inhomogeneous material constitutive data for the human supraspinous ligament (SSL). Multi-axial material data from 30 human cadaveric SSL samples was collected from distinct locations (dorsal, midsection, and ventral). A structurally motivated strain-energy based continuum model was employed to characterize anisotropic constitutive parameters for each sample. The anisotropic constitutive response correlated well with the reported experimental data (R2>0.97). Results show that in the lumbar spine both the material stiffness and stress at failure were significantly higher in the ventral region of the SSL as compared with the dorsal region (p<0.05). In the along fiber direction a higher stiffness and stress at failure were observed when compared to the transverse direction. These results indicate that modeling spinal ligaments using the hyperelastic line elements that have typically been used may be insufficient to capture their complex material response.


The Spine Journal | 2014

Characterization and prediction of rate-dependent flexibility in lumbar spine biomechanics at room and body temperature

Dean K. Stolworthy; Shannon A. Zirbel; Larry L. Howell; Marina Samuels; Anton E. Bowden

BACKGROUND CONTEXT The soft tissues of the spine exhibit sensitivity to strain-rate and temperature, yet current knowledge of spine biomechanics is derived from cadaveric testing conducted at room temperature at very slow, quasi-static rates. PURPOSE The primary objective of this study was to characterize the change in segmental flexibility of cadaveric lumbar spine segments with respect to multiple loading rates within the range of physiologic motion by using specimens at body or room temperature. The secondary objective was to develop a predictive model of spine flexibility across the voluntary range of loading rates. STUDY DESIGN This in vitro study examines rate- and temperature-dependent viscoelasticity of the human lumbar cadaveric spine. METHODS Repeated flexibility tests were performed on 21 lumbar function spinal units (FSUs) in flexion-extension with the use of 11 distinct voluntary loading rates at body or room temperature. Furthermore, six lumbar FSUs were loaded in axial rotation, flexion-extension, and lateral bending at both body and room temperature via a stepwise, quasi-static loading protocol. All FSUs were also loaded using a control loading test with a continuous-speed loading-rate of 1-deg/sec. The viscoelastic torque-rotation response for each spinal segment was recorded. A predictive model was developed to accurately estimate spine segment flexibility at any voluntary loading rate based on measured flexibility at a single loading rate. RESULTS Stepwise loading exhibited the greatest segmental range of motion (ROM) in all loading directions. As loading rate increased, segmental ROM decreased, whereas segmental stiffness and hysteresis both increased; however, the neutral zone remained constant. Continuous-speed tests showed that segmental stiffness and hysteresis are dependent variables to ROM at voluntary loading rates in flexion-extension. To predict the torque-rotation response at different loading rates, the model requires knowledge of the segmental flexibility at a single rate and specified temperature, and a scaling parameter. A Bland-Altman analysis showed high coefficients of determination for the predictive model. CONCLUSIONS The present work demonstrates significant changes in spine segment flexibility as a result of loading rate and testing temperature. Loading rate effects can be accounted for using the predictive model, which accurately estimated ROM, neutral zone, stiffness, and hysteresis within the range of voluntary motion.


Journal of Biomedical Materials Research Part B | 2010

Wear Pattern Observations from TDR Retrievals Using Autoregistration of Voxel Data

Yakov P. Shkolnikov; Anton E. Bowden; Daniel W. MacDonald; Steven M. Kurtz

Because of their unique geometry, characterization of wear damage in total disc replacement (TDR) is difficult. In the article, we developed and validated an automated damage calculation technique for explanted TDR components. Eight polyethylene cores implanted from 4.6 to 16.0 years were using cone-beam microCT imaging (SCANCO Medical, Switzerland). The nominal uniform voxel size for the implant under investigation was 18 mum, however with a smaller sample size increased resolutions (10-microm nominal voxel size) could be achieved using the same microCT imaging hardware. Nominal surface data for both sizes of TDR components we examined were obtained from manufacturers drawings (Link, Germany) and converted to highly discretized triangular meshes. The damage calculation technique utilized an initial alignment phase, followed by a pointwise calculation of the linear damage at each 3D surface point. During the alignment phase, a three-dimensional surface of the undamaged component was automatically aligned with volumetric image data from the damaged component. The alignment algorithm maximized the contact area between undamaged portions of the implant and its nominal surface using an iterative optimization technique. Linear damage at each triangle on the nominal surface was computed by moving along the local normal of the surface both inward and outward direction for a distance much less than the size of the implant. For the retrieved components, the maximum damage occurred away from the central axis of the dome close to the rim. Penetrations of up to 0.8 mm were observed in this region. Lower magnitude penetrations were observed near the pole of the dome. In conclusion, we have developed an analytical method to automatically align and measure three-dimensional surface damage with both high resolution and accuracy on implants with complicated, nonparametric, surface geometry and used this technique to analyze eight implants.


Spine | 2015

Low Back Pain: A Biomechanical Rationale Based on "Patterns" of Disc Degeneration.

Gregory A. Von Forell; Trevor Stephens; D Samartzis; Anton E. Bowden

Study Design. A nonlinear finite element study of a lumbar spine with different “patterns” of multilevel intervertebral disc degeneration. Objective. To determine how different patterns of multilevel disc degeneration influence the biomechanical behavior of the lumbar spine. Summary of Background Data. Because of the complex etiology of low back pain, it is often difficult to identify the specific factors that contribute to the symptoms of a particular patient. Disc degeneration is associated with the development of low back pain, but its presence is not always synonymous with symptoms. However, studies have suggested that “patterns” of disc degeneration may provide insight into such pain generation rather than the overall presence of degenerative changes. Specifically, individuals with contiguous multilevel disc degeneration have been shown to exhibit higher presence and severity of low back pain than patients with skipped-level disc degeneration (i.e., healthy discs located in between degenerated discs). Methods. In this study, the biomechanical differences between these patterns were analyzed using a nonlinear finite element model of the lumbar spine. Thirteen separate “patterns” of disc degeneration were evaluated using the model and simulated under normal physiological loading conditions in each of the primary modes of spinal motion. Results. The results showed that stresses and forces of the surrounding ligaments, facets, and pedicles at certain vertebral levels of the spine were generally lower in skipped-level disc degeneration cases than in the contiguous multilevel disc degenerations cases even when the skipped level contained more degenerated discs. Conclusion. To our knowledge, this is the first study to illustrate the biomechanics of specific patterns of disc degeneration of the lumbar spine. Using a multilevel disc degeneration model, our study provides insights as to why various patterns of disc degeneration throughout the lumbar spine may affect motion and soft tissue structures as well that may have bearing in the clinical pathway of pain generation. Level of Evidence: N/A


Journal of The Mechanical Behavior of Biomedical Materials | 2014

Failure modes and fracture toughness in partially torn ligaments and tendons.

Gregory A. Von Forell; Peter S. Hyoung; Anton E. Bowden

Ligaments and tendons are commonly torn during injury, yet the likelihood that untreated initial tears could lead to further tearing or even full rupture has proven challenging to predict. In this work, porcine Achilles tendon and human anterior longitudinal ligament samples were tested using both standard fracture toughness methods and complex loading conditions. Failure modes for each of 14 distinct testing cases were evaluated using a total of 131 soft tissue tests. Results showed that these soft tissues were able to completely resist any further crack propagation of an initial tear, regardless of fiber orientation or applied loading condition. Consequently, the major concern for patients with tendon or ligament tears is likely not reduction in ultimate tissue strength due to stress risers at the tip of the tear, but rather a question of whether or not the remaining cross-section is large enough to support the anticipated loading.


Journal of Mechanisms and Robotics | 2011

A Pseudo-Rigid-Body Model of the Human Spine to Predict Implant-Induced Changes on Motion

Peter A. Halverson; Anton E. Bowden; Larry L. Howell

Injury, instrumentation, or surgery may change the functional biomechanics of the spine. Adverse changes at one level may affect the adjacent levels. Modeling these changes can increase the understanding of adjacent-level effects and may help in the creation of devices that minimize adverse outcomes. The current modeling techniques (e.g., animal models, in vitro testing, and finite element analysis) used to analyze these effects are costly and are not readily accessible to the clinician. It is proposed that the pseudo-rigid-body model(PRBM) may be used to accurately predict adjacent level effects in a quick and cost effective manner that may lend itself to a clinically relevant tool for identifying the adjacent-level effects of various treatment options for patients with complex surgical indications. A PRBM of the lumbar spine (lower back) was developed using a compliant mechanism analysis approach. The global moment-rotation response, relative motion, and local moment-rotation response of a cadaveric specimen were determined through experimental testing under three conditions: intact, fused, and implanted with a prototype total disc replacement. The spine was modeled using the PRBM and compared with the values obtained through in-vitro testing for the three cases. The PRBM accurately predicted the moment-rotation response of the entire specimen. Additionally, the PRBM predicted changes in relative motion patterns of the specimen. The resulting models show particular promise in evaluating various procedures and implants in a clinical setting and in the early stage design process.


Journal of Orthopaedic Research | 2015

MRI evaluation of spontaneous intervertebral disc degeneration in the alpaca cervical spine

Dean K. Stolworthy; Anton E. Bowden; Beverly L. Roeder; Todd F. Robinson; Jacob G. Holland; S. Loyd Christensen; Amanda M. Beatty; Laura C. Bridgewater; Dennis L. Eggett; John D. Wendel; Susanne M. Stieger-Vanegas; Meredith D. Taylor

Animal models have historically provided an appropriate benchmark for understanding human pathology, treatment, and healing, but few animals are known to naturally develop intervertebral disc degeneration. The study of degenerative disc disease and its treatment would greatly benefit from a more comprehensive, and comparable animal model. Alpacas have recently been presented as a potential large animal model of intervertebral disc degeneration due to similarities in spinal posture, disc size, biomechanical flexibility, and natural disc pathology. This research further investigated alpacas by determining the prevalence of intervertebral disc degeneration among an aging alpaca population. Twenty healthy female alpacas comprised two age subgroups (5 young: 2–6 years; and 15 older: 10+ years) and were rated according to the Pfirrmann‐grade for degeneration of the cervical intervertebral discs. Incidence rates of degeneration showed strong correlations with age and spinal level: younger alpacas were nearly immune to developing disc degeneration, and in older animals, disc degeneration had an increased incidence rate and severity at lower cervical levels. Advanced disc degeneration was present in at least one of the cervical intervertebral discs of 47% of the older alpacas, and it was most common at the two lowest cervical intervertebral discs. The prevalence of intervertebral disc degeneration encourages further investigation and application of the lower cervical spine of alpacas and similar camelids as a large animal model of intervertebral disc degeneration.


Computer Methods in Biomechanics and Biomedical Engineering | 2014

Biomechanical implications of lumbar spinal ligament transection.

Gregory A. Von Forell; Anton E. Bowden

Many lumbar spine surgeries either intentionally or inadvertently damage or transect spinal ligaments. The purpose of this work was to quantify the previously unknown biomechanical consequences of isolated spinal ligament transection on the remaining spinal ligaments (stress transfer), vertebrae (bone remodelling stimulus) and intervertebral discs (disc pressure) of the lumbar spine. A finite element model of the full lumbar spine was developed and validated against experimental data and tested in the primary modes of spinal motion in the intact condition. Once a ligament was removed, stress increased in the remaining spinal ligaments and changes occurred in vertebral strain energy, but disc pressure remained similar. All major biomechanical changes occurred at the same spinal level as the transected ligament, with minor changes at adjacent levels. This work demonstrates that iatrogenic damage to spinal ligaments disturbs the load sharing within the spinal ligament network and may induce significant clinically relevant changes in the spinal motion segment.


ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference | 2010

Force-Displacement Model of the FlexSuRe™ Spinal Implant

Eric M. Stratton; Larry L. Howell; Anton E. Bowden

This paper presents modeling of a novel compliant spinal implant designed to reduce back pain and restore function to degenerate spinal disc tissues as well as provide a mechanical environment conducive to healing of the tissues. Modeling was done through the use of the pseudo-rigid-body model. The pseudo-rigid-body model is a 3 DOF mechanism for flexion-extension (forward-backward bending) and a 5 DOF mechanism for lateral bending (side-to-side). These models were analyzed using the principle of virtual work to obtain the force-deflection response of the device. The model showed good correlation to finite element analysis and experimental results. The implant may be particularly useful in the early phases of implant design and when designing for particular biological parameters.Copyright


Journal of The Mechanical Behavior of Biomedical Materials | 2015

Transversely isotropic material characterization of the human anterior longitudinal ligament.

Mitchell Scott Hortin; Sarah Graham; Kara Janell Boatwright; Peter S. Hyoung; Anton E. Bowden

The present work represents the first study to report transversely isotropic material parameters for the human anterior longitudinal ligament (ALL) in the thoraco-lumbar spine. Force-deformation data from multi-axial testing was collected from 30 cadaveric spine test specimens using an anisotropic quarter punch test technique. The experimental data was fit to a commonly used anisotropic soft tissue material model using an FEA system identification technique. The material model correlated well with the experimental response (R(2)≥0.98). The constitutive parameter values, as well as the nonlinear anisotropic stress-strain response of the ALL specimens are reported to facilitate application to biomechanical models (including finite element models) of the spine.

Collaboration


Dive into the Anton E. Bowden's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adin Martineau

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar

Gavin Collins

Brigham Young University

View shared research outputs
Researchain Logo
Decentralizing Knowledge