Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anton Mihic is active.

Publication


Featured researches published by Anton Mihic.


Endocrinology | 2008

Inhibition of Cholesterol Biosynthesis Impairs Insulin Secretion and Voltage-Gated Calcium Channel Function in Pancreatic β-Cells

Fuzhen Xia; Li Xie; Anton Mihic; Xiaodong Gao; Yi Chen; Herbert Y. Gaisano; Robert G. Tsushima

Insulin secretion from pancreatic beta-cells is mediated by the opening of voltage-gated Ca2+ channels (CaV) and exocytosis of insulin dense core vesicles facilitated by the secretory soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein machinery. We previously observed that beta-cell exocytosis is sensitive to the acute removal of membrane cholesterol. However, less is known about the chronic changes in endogenous cholesterol and its biosynthesis in regulating beta-cell stimulus-secretion coupling. We examined the effects of inhibiting endogenous beta-cell cholesterol biosynthesis by using the squalene epoxidase inhibitor, NB598. The expression of squalene epoxidase in primary and clonal beta-cells was confirmed by RT-PCR. Cholesterol reduction of 36-52% was observed in MIN6 cells, mouse and human pancreatic islets after a 48-h incubation with 10 mum NB598. A similar reduction in cholesterol was observed in the subcellular compartments of MIN6 cells. We found NB598 significantly inhibited both basal and glucose-stimulated insulin secretion from mouse pancreatic islets. CaV channels were markedly inhibited by NB598. Rapid photolytic release of intracellular caged Ca2+ and simultaneous measurements of the changes in membrane capacitance revealed that NB598 also inhibited exocytosis independently from CaV channels. These effects were reversed by cholesterol repletion. Our results indicate that endogenous cholesterol in pancreatic beta-cells plays a critical role in regulating insulin secretion. Moreover, chronic inhibition of cholesterol biosynthesis regulates the functional activity of CaV channels and insulin secretory granule mobilization and membrane fusion. Dysregulation of cellular cholesterol may cause impairment of beta-cell function, a possible pathogenesis leading to the development of type 2 diabetes.


Biomaterials | 2014

The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes

Anton Mihic; Jiao Li; Yasuo Miyagi; Mark Gagliardi; Shu-Hong Li; Jean Zu; Richard D. Weisel; Gordon Keller; Ren-Ke Li

The goal of cardiac tissue engineering is to restore function to the damaged myocardium with regenerative constructs. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can produce viable, contractile, three-dimensional grafts that function in vivo. We sought to enhance the viability and functional maturation of cardiac tissue constructs by cyclical stretch. hESC-CMs seeded onto gelatin-based scaffolds underwent cyclical stretching. Histological analysis demonstrated a greater proportion of cardiac troponin T-expressing cells in stretched than non-stretched constructs, and flow sorting demonstrated a higher proportion of cardiomyocytes. Ultrastructural assessment showed that cells in stretched constructs had a more mature phenotype, characterized by greater cell elongation, increased gap junction expression, and better contractile elements. Real-time PCR revealed enhanced mRNA expression of genes associated with cardiac maturation as well as genes encoding cardiac ion channels. Calcium imaging confirmed that stretched constructs contracted more frequently, with shorter calcium cycle duration. Epicardial implantation of constructs onto ischemic rat hearts demonstrated the feasibility of this platform, with enhanced survival and engraftment of transplanted cells in the stretched constructs. This uniaxial stretching system may serve as a platform for the production of cardiac tissue-engineered constructs for translational applications.


Nature Biotechnology | 2014

Generation of the epicardial lineage from human pluripotent stem cells

Alec D. Witty; Anton Mihic; Roger Y. Tam; Stephanie A. Fisher; Alexander Mikryukov; Molly S. Shoichet; Ren-Ke Li; Steven Kattman; Gordon Keller

The epicardium supports cardiomyocyte proliferation early in development and provides fibroblasts and vascular smooth muscle cells to the developing heart. The epicardium has been shown to play an important role during tissue remodeling after cardiac injury, making access to this cell lineage necessary for the study of regenerative medicine. Here we describe the generation of epicardial lineage cells from human pluripotent stem cells by stage-specific activation of the BMP and WNT signaling pathways. These cells display morphological characteristics and express markers of the epicardial lineage, including the transcription factors WT1 and TBX18 and the retinoic acid–producing enzyme ALDH1A2. When induced to undergo epithelial-to-mesenchymal transition, the cells give rise to populations that display characteristics of the fibroblast and vascular smooth muscle lineages. These findings identify BMP and WNT as key regulators of the epicardial lineage in vitro and provide a model for investigating epicardial function in human development and disease.


Biomaterials | 2010

Surgical ventricular restoration with a cell- and cytokine-seeded biodegradable scaffold

Yasuo Miyagi; Faquan Zeng; Xi-Ping Huang; Warren D. Foltz; Jun Wu; Anton Mihic; Terrence M. Yau; Richard D. Weisel; Ren-Ke Li

Late after a myocardial infarction (MI), surgical ventricular restoration (SVR) can reduce left ventricular volumes, but an enhanced cardiac patch may be required to restore function. We developed a new, biodegradable patch (modified gelfoam, MGF) consisting of a spongy inner core (gelfoam) to encourage cell engraftment and an outer coating (poly epsilon-caprolactone) to provide sufficient strength to permit ventricular repair. Two weeks after coronary ligation in rats, SVR was performed using one of the following: gelfoam, MGF, MGF patches with hydrogel alone, or with hydrogel and cytokines (stem cell factor, stromal cell-derived factor-1alpha), bone marrow mesenchymal stem cells, or both. Cardiac function and morphology were evaluated by echocardiography, conduction catheterization, magnetic resonance imaging, and histology. Animals whose hearts were repaired with untreated gelfoam died of ventricular rupture. The MGF groups had significantly improved myocardial systolic function vs. MI controls. Enhancement with cytokines and/or cells promoted more alpha-smooth muscle actin-positive cells, more capillaries, greater wall thickness, a more ellipsoid shape, greater fractional shortening, and better-preserved systolic elastance than MGF alone. This combination of the new, reinforced, biodegradable biomaterial and cytokine/cell treatment created a viable tissue after SVR and produced better functional outcomes than un-reinforced gelfoam or MGF alone.


Circulation | 2015

A Conductive Polymer Hydrogel Supports Cell Electrical Signaling and Improves Cardiac Function After Implantation into Myocardial Infarct

Anton Mihic; Zhi Cui; Jun Wu; Goran Vlacic; Yasuo Miyagi; Shu-Hong Li; Sun Lu; Hsing-Wen Sung; Richard D. Weisel; Ren-Ke Li

Background— Efficient cardiac function requires synchronous ventricular contraction. After myocardial infarction, the nonconductive nature of scar tissue contributes to ventricular dysfunction by electrically uncoupling viable cardiomyocytes in the infarct region. Injection of a conductive biomaterial polymer that restores impulse propagation could synchronize contraction and restore ventricular function by electrically connecting isolated cardiomyocytes to intact tissue, allowing them to contribute to global heart function. Methods and Results— We created a conductive polymer by grafting pyrrole to the clinically tested biomaterial chitosan to create a polypyrrole (PPy)-chitosan hydrogel. Cyclic voltammetry showed that PPy-chitosan had semiconductive properties lacking in chitosan alone. PPy-chitosan did not reduce cell attachment, metabolism, or proliferation in vitro. Neonatal rat cardiomyocytes plated on PPy-chitosan showed enhanced Ca2+ signal conduction in comparison with chitosan alone. PPy-chitosan plating also improved electric coupling between skeletal muscles placed 25 mm apart in comparison with chitosan alone, demonstrating that PPy-chitosan can electrically connect contracting cells at a distance. In rats, injection of PPy-chitosan 1 week after myocardial infarction decreased the QRS interval and increased the transverse activation velocity in comparison with saline or chitosan, suggesting improved electric conduction. Optical mapping showed increased activation in the border zone of PPy-chitosan–treated rats. Echocardiography and pressure–volume analysis showed improvement in load-dependent (ejection fraction, fractional shortening) and load-independent (preload recruitable stroke work) indices of heart function 8 weeks after injection. Conclusions— We synthesized a biocompatible conductive biomaterial (PPy-chitosan) that enhances biological conduction in vitro and in vivo. Injection of PPy-chitosan better maintained heart function after myocardial infarction than a nonconductive polymer.


Circulation | 2013

Preserving Prostaglandin E2 Level Prevents Rejection of Implanted Allogeneic Mesenchymal Stem Cells and Restores Postinfarction Ventricular Function

Sanjiv Dhingra; Peng Li; Xi-Ping Huang; Jian Guo; Jun Wu; Anton Mihic; Shu-Hong Li; Wang-Fu Zang; Daniel Shen; Richard D. Weisel; Pawan K. Singal; Ren-Ke Li

Background— Allogeneic mesenchymal stem cells (MSCs) were immunoprivileged early after cardiac implantation and improved heart function in preclinical and clinical studies. However, long-term preclinical studies demonstrated that allogeneic MSCs lost their immunoprivilege and were rejected in the injured myocardium, resulting in recurrent ventricular dysfunction. This study identifies some of the mechanisms responsible for the immune switch in MSCs and suggests a new treatment to maintain immunoprivilege and preserve heart function. Methods and Results— Rat MSC immunoprivilege was mediated by prostaglandin E2 (PGE2)–induced secretion of 2 critical chemokines, CCL12 and CCL5. These chemokines stimulated the chemoattraction of T cells toward MSCs, suppressed cytotoxic T-cell proliferation, and induced the production of T regulatory cells. MSCs treated with 5-azacytidine for 24 hours differentiated into myogenic cells after 2 weeks, which was associated with decreased PGE2 and chemokine production and the loss of immunoprivilege. Treatment of differentiated MSCs with PGE2 restored chemokine levels and preserved MSC immunoprivilege. In a rat myocardial infarction model, allogeneic MSCs (3×106 cells/rat) were injected into the infarct region with or without a biodegradable hydrogel that slowly released PGE2. Five weeks later, the transplanted MSCs expressed myogenic lineage markers and were rejected in the control group, but in the PGE2-treated group, the transplanted cells survived and heart function improved. Conclusions— Allogeneic MSCs maintained immunoprivilege by PGE2-induced secretion of chemokines CCL12 and CCL5. Differentiation of MSCs decreased PGE2 levels, and immunoprivilege was lost. Maintaining PGE2 levels preserved immunoprivilege after differentiation, prevented rejection of implanted MSCs, and restored cardiac function.


American Journal of Pathology | 2012

Role of WNT/β-Catenin Signaling in Rejuvenating Myogenic Differentiation of Aged Mesenchymal Stem Cells from Cardiac Patients

Keith R. Brunt; Yuemei Zhang; Anton Mihic; Mingxi Li; Shu-Hong Li; Phil Xue; William Zhang; Samir Basmaji; Katherine Tsang; Richard D. Weisel; Terrence M. Yau; Ren-Ke Li

Autologous stem cell therapy has not been as effective as forecasted from preclinical studies. Patient age was reported as an important contributing factor. The goal of this study was to uncover age-dependent mechanisms of stem cell dysfunction and to investigate possible means to restore the cellular function. Bone marrow mesenchymal stem cells (MSCs) were isolated from cardiovascular patients. Cell proliferation and number of colonies were inversely correlated with patient age. Myogenic differentiation of MSCs in culture was induced with 5-azacytidine. Differentiation correlated with age, with less differentiation in MSCs from aged patients. We performed real-time PCR to identify genes in the WNT/β-catenin signaling network and found that transcript levels of CTNNB1, LEF1, FZD8, WNT3A, and SFRP4 were negatively correlated with age, whereas FOSL1, LRP6, and FZD6 were positively correlated with age. Protein evaluation showed that β-catenin nuclear translocation correlated with age and was lower in aged MSCs. Aged MSCs treated with lithium chloride-to increase the bioavailability of β-catenin-recovered their capacity for myogenic differentiation through myocyte enhancer factor 2C but not with the knockdown of β-catenin using small-interfering RNA. This study may be the first to relate reduced nuclear β-catenin bioavailability in MSCs from aged patients. Most important, this abnormality was potentially recoverable, providing a target for improving the function of bone marrow stem cells and their clinical utility in aged patients.


Soft Matter | 2010

Hydrogels modified with QHREDGS peptide support cardiomyocyte survival in vitro and after sub-cutaneous implantation

Fiona Rask; Anton Mihic; Lewis A. Reis; Susan M. Dallabrida; Nesreen S. Ismail; Krista L. Sider; Craig A. Simmons; Maria Rupnick; Richard D. Weisel; Ren-Ke Li; Milica Radisic

Myocardial cell injection and tissue engineering could provide novel treatment options for heart diseases; however both approaches are limited by the loss of the transplanted myogenic cells. We hypothesized that novel hydrogels could promote cardiomyocyte survival and remedy this critical limitation. The hydrogel described here is based on a photocrosslinked form of chitosan, Az-chitosan, which was covalently bound to the QHREDGS peptide to promote cell survival. The QHREDGS amino acid sequence is thought to be the integrin binding site in angiopoietin-1, a growth factor which has cardioprotective properties. Covalent immobilization was performed using 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide chemistry. Elastic moduli of the Az-chitosan hydrogel were within the lower physiological range for the neonatal rat heart (1.9 ± 0.2 kPa for 10 mg/ml and 3.5 ± 0.6 kPa for 20 mg/ml). After 6 days of cultivation of neonatal rat heart cells encapsulated with the hydrogels, cell viability and elongation was significantly higher in the peptide modified groups compared to the Az-chitosan control. No significant differences were found in the ability of RGDS and QHREDGS hydrogels to support contractile function in vitro. After subcutaneous implantation of cardiomyocyte hydrogel-peptide constructs in Lewis rats for 7 days, both QHREDGS and RGDS similarly recruited endothelial cells. However, Az-chitosan-QHREDGS gel had a higher percentage of smooth muscle actin (SMA)-positive myofibroblasts. The QHREDGS peptide gel promoted cardiomyocyte elongation and assembly of contractile apparatus and reduced cardiomyocyte apoptosis significantly better than the RGDS peptide. The new Az-chitosan-QHREDGS hydrogel may markedly improve cardiac regeneration by cell therapy.


Cardiovascular Research | 2013

Serum-free differentiation of functional human coronary-like vascular smooth muscle cells from embryonic stem cells

Omar El-Mounayri; Anton Mihic; Eric A. Shikatani; Mark Gagliardi; Sarah K. Steinbach; Nicole Dubois; Ralph S. DaCosta; Ren-Ke Li; Gordon Keller; Mansoor Husain

AIMS Despite the diverse developmental origins of vascular smooth muscle cells (VSMCs), recent attempts to generate VSMCs from human embryonic stem cells (hESCs) differentiated along various lineages did not yield distinct cell phenotypes. The aim of this study was to derive and characterize functional coronary-like VSMCs from hESCs using serum-free cardiac-directed differentiation. METHODS AND RESULTS Embryoid bodies (EBs) from three pluripotent stem cell lines subjected to cardiac-directed differentiation in defined media were characterized over 30 days for VSMC-specific gene expression by qRT-PCR, immunofluorescence microscopy and fluorescence-activated cell sorting (FACS). EBs composed of cardiomyocytes, endothelial cells (ECs), fibroblasts, and VSMCs underwent FACS on d28 to reveal that the VSMCs form a distinct subpopulation, which migrate with ECs in an in vitro angiogenesis assay. To enrich for VSMCs, d28 EBs were dissociated and cultured as monolayers. Over several passages, mRNA and protein levels of cardiomyocyte, endothelial, and fibroblast markers were abolished, whereas those of mature VSMCs were unchanged. Vascular endothelial growth factor and basic fibroblast growth factor were critical for the separation of the cardiac and VSMC lineages in EBs, and for the enrichment of functional VSMCs in monolayer cultures. Calcium cycling and cell shortening responses to vasoconstrictors in hESC-derived VSMCs in vitro were indistinguishable from primary human coronary artery SMCs, and distinct from bladder and aorta SMCs. VSMCs identically derived from green fluorescent protein -expressing hESCs integrated in and contributed to new vessel formation in vivo. CONCLUSION The ability to generate hESC-derived functional human coronary-like VSMCs in serum-free conditions has implications for disease modelling, drug screening, and regenerative therapies.


PLOS ONE | 2011

Trafficking defect and proteasomal degradation contribute to the phenotype of a novel KCNH2 long QT syndrome mutation.

Anton Mihic; Vijay S. Chauhan; Xiaodong Gao; Gavin Y. Oudit; Robert G. Tsushima

The Kv11.1 (hERG) K+ channel plays a fundamental role in cardiac repolarization. Missense mutations in KCNH2, the gene encoding Kv11.1, cause long QT syndrome (LQTS) and frequently cause channel trafficking-deficiencies. This study characterized the properties of a novel KCNH2 mutation discovered in a LQT2 patient resuscitated from a ventricular fibrillation arrest. Proband genotyping was performed by SSCP and DNA sequencing. The electrophysiological and biochemical properties of the mutant channel were investigated after expression in HEK293 cells. The proband manifested a QTc of 554 ms prior to electrolyte normalization. Mutation analysis revealed an autosomal dominant frameshift mutation at proline 1086 (P1086fs+32X; 3256InsG). Co-immunoprecipitation demonstrated that wild-type Kv11.1 and mutant channels coassemble. Western blot showed that the mutation did not produce mature complex-glycosylated Kv11.1 channels and coexpression resulted in reduced channel maturation. Electrophysiological recordings revealed mutant channel peak currents to be similar to untransfected cells. Co-expression of channels in a 1∶1 ratio demonstrated dominant negative suppression of peak Kv11.1 currents. Immunocytochemistry confirmed that mutant channels were not present at the plasma membrane. Mutant channel trafficking rescue was attempted by incubation at reduced temperature or with the pharmacological agents E-4031. These treatments did not significantly increase peak mutant currents or induce the formation of mature complex-glycosylated channels. The proteasomal inhibitor lactacystin increased the protein levels of the mutant channels demonstrating proteasomal degradation, but failed to induce mutant Kv11.1 protein trafficking. Our study demonstrates a novel dominant-negative Kv11.1 mutation, which results in degraded non-functional channels leading to a LQT2 phenotype.

Collaboration


Dive into the Anton Mihic's collaboration.

Top Co-Authors

Avatar

Ren-Ke Li

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Wu

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Shu-Hong Li

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Jian Guo

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Yasuo Miyagi

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Gordon Keller

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjiv Dhingra

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge