Anton Osokin
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anton Osokin.
International Journal of Computer Vision | 2012
Andrew Delong; Anton Osokin; Hossam N. Isack; Yuri Boykov
The α-expansion algorithm has had a significant impact in computer vision due to its generality, effectiveness, and speed. It is commonly used to minimize energies that involve unary, pairwise, and specialized higher-order terms. Our main algorithmic contribution is an extension of α-expansion that also optimizes “label costs” with well-characterized optimality bounds. Label costs penalize a solution based on the set of labels that appear in it, for example by simply penalizing the number of labels in the solution.Our energy has a natural interpretation as minimizing description length (MDL) and sheds light on classical algorithms like K-means and expectation-maximization (EM). Label costs are useful for multi-model fitting and we demonstrate several such applications: homography detection, motion segmentation, image segmentation, and compression. Our C++ and MATLAB code is publicly available http://vision.csd.uwo.ca/code/.
computer vision and pattern recognition | 2013
Pushmeet Kohli; Anton Osokin; Stefanie Jegelka
We discuss a model for image segmentation that is able to overcome the short-boundary bias observed in standard pairwise random field based approaches. To wit, we show that a random field with multi-layered hidden units can encode boundary preserving higher order potentials such as the ones used in the cooperative cuts model of [11] while still allowing for fast and exact MAP inference. Exact inference allows our model to outperform previous image segmentation methods, and to see the true effect of coupling graph edges. Finally, our model can be easily extended to handle segmentation instances with multiple labels, for which it yields promising results.
international conference on computer vision | 2015
Tuan-Hung Vu; Anton Osokin; Ivan Laptev
Person detection is a key problem for many computer vision tasks. While face detection has reached maturity, detecting people under full variation of camera view-points, human poses, lighting conditions and occlusions is still a difficult challenge. In this work we focus on detecting human heads in natural scenes. Starting from the recent R-CNN object detector, we extend it in two ways. First, we leverage person-scene relations and propose a global CNN model trained to predict positions and scales of heads directly from the full image. Second, we explicitly model pairwise relations among the objects via energy-based model where the potentials are computed with a CNN framework. Our full combined model complements R-CNN with contextual cues derived from the scene. To train and test our model, we introduce a large dataset with 369,846 human heads annotated in 224,740 movie frames. We evaluate our method and demonstrate improvements of person head detection compared to several recent baselines on three datasets. We also show improvements of the detection speed provided by our model.
computer vision and pattern recognition | 2011
Anton Osokin; Dmitry P. Vetrov; Vladimir Kolmogorov
In this paper we address the problem of finding the most probable state of discrete Markov random field (MRF) with associative pairwise terms. Although of practical importance, this problem is known to be NP-hard in general. We propose a new type of MRF decomposition, submod-ular decomposition (SMD). Unlike existing decomposition approaches SMD decomposes the initial problem into sub-problems corresponding to a specific class label while preserving the graph structure of each subproblem. Such decomposition enables us to take into account several types of global constraints in an efficient manner. We study theoretical properties of the proposed approach and demonstrate its applicability on a number of problems.
european conference on computer vision | 2014
Anton Osokin; Pushmeet Kohli
Interactive image segmentation is an important computer vision problem that has numerous real world applications. Models for image segmentation are generally trained to minimize the Hamming error in pixel labeling. The Hamming loss does not ensure that the topology/structure of the object being segmented is preserved and therefore is not a strong indicator of the quality of the segmentation as perceived by users. However, it is still ubiquitously used for training models because it decomposes over pixels and thus enables efficient learning. In this paper, we propose the use of a novel family of higher-order loss functions that encourage segmentations whose layout is similar to the ground-truth segmentation. Unlike the Hamming loss, these loss functions do not decompose over pixels and therefore cannot be directly used for loss-augmented inference. We show how our loss functions can be transformed to allow efficient learning and demonstrate the effectiveness of our method on a challenging segmentation dataset and validate the results using a user study. Our experimental results reveal that training with our layout-aware loss functions results in better segmentations that are preferred by users over segmentations obtained using conventional loss functions.
international conference on computer vision | 2012
Anton Osokin; Dmitry P. Vetrov
In the paper we propose a novel dual decomposition scheme for approximate MAP-inference in Markov Random Fields with sparse high-order potentials, i.e. potentials encouraging relatively a small number of variable configurations. We construct a Lagrangian dual of the problem in such a way that it can be efficiently evaluated by minimizing a submodular function with a min-cut/max-flow algorithm. We show the equivalence of this relaxation to a specific type of linear program and derive the conditions under which it is equivalent to generally tighter LP-relaxation solved in [1]. Unlike the latter our relaxation has significantly less dual variables and hence is much easier to solve. We demonstrate its faster convergence on several synthetic and real problems.
Pattern Recognition and Image Analysis | 2010
Dmitry Kropotov; D. Laptev; Anton Osokin; Dmitry P. Vetrov
We consider image and signal segmentation problems within the Markov random field (MRF) approach and try to take into account label frequency constraints. Incorporating these constraints into MRF leads to an NP-hard optimization problem. For solving this problem we present a two-step approximation scheme that allows one to use hard, interval and soft constraints on label frequencies. On the first step a factorized approximation of the joint distribution is made (only local terms are included) and then, on the second step, the labeling is found by conditional maximization of the factorized joint distribution. The latter task is reduced to an easy-to-solve transportation problem. Basing on the proposed two-step approximation scheme we derive the ELM algorithm for tuning MRF parameters. We show the efficiency of our approach on toy signals and on the task of automated segmentation of Google Maps.
Computational Mathematics and Mathematical Physics | 2010
Dmitry P. Vetrov; Dmitry Kropotov; Anton Osokin
The classical EM algorithm for the restoration of the mixture of normal probability distributions cannot determine the number of components in the mixture. An algorithm called ARD EM for the automatic determination of the number of components is proposed, which is based on the relevance vector machine. The idea behind this algorithm is to use a redundant number of mixture components at the first stage and then determine the relevant components by maximizing the evidence. Experiments with model problems show that the number of clusters thus determined either coincides with the actual number or slightly exceeds it. In addition, clusterization using ARD EM turns out to be closer to the actual clusterization than that obtained by the analogs based on cross validation and the minimum description length principle.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2015
Anton Osokin; Dmitry P. Vetrov
In this paper we address the problem of finding the most probable state of a discrete Markov random field (MRF), also known as the MRF energy minimization problem. The task is known to be NP-hard in general and its practical importance motivates numerous approximate algorithms. We propose a submodular relaxation approach (SMR) based on a Lagrangian relaxation of the initial problem. Unlike the dual decomposition approach of Komodakis et al. [29] SMR does not decompose the graph structure of the initial problem but constructs a submodular energy that is minimized within the Lagrangian relaxation. Our approach is applicable to both pairwise and high-order MRFs and allows to take into account global potentials of certain types. We study theoretical properties of the proposed approach and evaluate it experimentally.
Bulletin of Experimental Biology and Medicine | 2013
E. M. Amelchenko; Anton Osokin; S. V. Zworikina; S. A. Chekhov; Alexey E Lebedev; P. A. Voronin; V. V. Galatenko; Dmitry P. Vetrov; K. V. Anokhin
We analyzed the expression of transcription factor c-Fos induced by neural activity in the mouse brain after acoustic stimulation. The brain sections of the animals subjected to acoustic stimulation and controls were immunohistochemically stained for c-Fos protein. Statistical parametric mapping (SPM) was used to identify group differences in the acquired images. c-Fos expression was significantly higher in the auditory cortex, amygdala, and hippocampus CA3 area after tone presentation. The proposed combination of SPM with molecularbiological approach to visualization of transcription in the nerve cells makes it possible to identify the collaborative activation of distant brain structures assumed to be the components of united functional systems.