Anton Page
University of Southampton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anton Page.
Neuropathology and Applied Neurobiology | 2008
Roxana O. Carare; M. Bernardes-Silva; Tracey A. Newman; Anton Page; James A. R. Nicoll; V.H. Perry; Roy O. Weller
Elimination of interstitial fluid and solutes plays a role in homeostasis in the brain, but the pathways are unclear. Previous work suggests that interstitial fluid drains along the walls of arteries. Aims: to define the pathways within the walls of capillaries and arteries for drainage of fluid and solutes out of the brain. Methods: Fluorescent soluble tracers, dextran (3 kDa) and ovalbumin (40 kDa), and particulate fluospheres (0.02 μm and 1.0 μm in diameter) were injected into the corpus striatum of mice. Brains were examined from 5 min to 7 days by immunocytochemistry and confocal microscopy. Results: soluble tracers initially spread diffusely through brain parenchyma and then drain out of the brain along basement membranes of capillaries and arteries. Some tracer is taken up by vascular smooth muscle cells and by perivascular macrophages. No perivascular drainage was observed when dextran was injected into mouse brains following cardiac arrest. Fluospheres expand perivascular spaces between vessel walls and surrounding brain, are ingested by perivascular macrophages but do not appear to leave the brain even following an inflammatory challenge with lipopolysaccharide or kainate. Conclusions: capillary and artery basement membranes act as ‘lymphatics of the brain’ for drainage of fluid and solutes; such drainage appears to require continued cardiac output as it ceases following cardiac arrest. This drainage pathway does not permit migration of cells from brain parenchyma to the periphery. Amyloid‐β is deposited in basement membrane drainage pathways in cerebral amyloid angiopathy, and may impede elimination of amyloid‐β and interstitial fluid from the brain in Alzheimers disease. Soluble antigens, but not cells, drain from the brain by perivascular pathways. This atypical pattern of drainage may contribute to partial immune privilege of the brain and play a role in neuroimmunological diseases such as multiple sclerosis.
American Journal of Pathology | 2009
Zuzana Šišková; Anton Page; Vincent O’Connor; V.H. Perry
A growing body of evidence suggests that the loss of synapses is an early and major component of a number of neurodegenerative diseases. Murine prion disease offers a tractable preparation in which to study synaptic loss in a chronic neurodegenerative disease and to explore the underlying mechanisms. We have previously shown that synaptic loss in the hippocampus underpins the first behavioral changes and that there is a selective loss of presynaptic elements. The microglia have an activated morphology at this stage but they have an anti-inflammatory phenotype. We reasoned that the microglia might be involved in synaptic stripping, removing synapses undergoing a degenerative process, and that this gives rise to the anti-inflammatory phenotype. Analysis of synaptic density revealed a progressive loss from 12 weeks post disease initiation. The loss of synapses was not associated with microglia processes; instead, we found that the postsynaptic density of the dendritic spine was progressively wrapped around the degenerating presynaptic element with loss of subcellular components. Three-dimensional reconstructions of these structures from Dual Beam electron microscopy support the conclusion that the synaptic loss in prion disease is a neuron autonomous event facilitated without direct involvement of glial cells. Previous studies described synapse engulfment by developing and injured neurons, and we suggest that this mechanism may contribute to developmental and pathological changes in synapse numbers.
Planta | 2015
Joanna Lado; Lorenzo Zacarías; Aranzazu Gurrea; Anton Page; Anthony D. Stead; María Jesús Rodrigo
AbstractMain conclusionDifferentiation of new and characteristic plastid ultrastructures during ripening of citrus fruits in both peel and pulp appears to be strongly correlated with the content and complement of carotenoids. Most of the species of the Citrus genus display a wide range in fruit colouration due to differences in carotenoids; however, how this diversity is related and may contribute to plastid differentiation and ultrastructure is currently unknown. To that end, carotenoid profile and plastid ultrastructure were compared in peel and pulp of three sweet oranges: the ordinary orange-coloured Navel, rich in β,β-xanthophylls, the yellow Pinalate mutant with an elevated content of colourless carotenes and reduced β,β-xanthophylls, and the red-fleshed Cara Cara with high concentration of colourless carotenes and lycopene in the pulp; and two grapefruits: the white Marsh, with low carotenoid content, and the red Star Ruby, accumulating upstream carotenes and lycopene. The most remarkable differences in plastid ultrastructure among varieties were detected in the pulp at full colour, coinciding with major differences in carotenoid composition. Accumulation of lycopene in Cara Cara and Star Ruby pulp was associated with the presence of needle-like crystals in the plastids, while high content of upstream carotenes in Pinalate pulp was related to the development of a novel plastid type with numerous even and round vesicles. The presence of plastoglobuli was linked to phytoene and xanthophyll accumulation, suggesting these structures as the main sites for the accumulation of these pigments. Peel chromoplasts were richer in membranes compared to pulp chromoplasts, reflecting their different biogenesis. In summary, differences in carotenoid composition and accumulation of unusual carotenoids are mirrored by the development of diverse and novel chromoplast types, revealing the plasticity of these organelles to rearrange carotenoids inside different structures to allow massive accumulation and thus contributing to the chemical stability of the carotenoids.
Tissue & Cell | 2017
Savannah A. Lynn; Gareth Ward; Eloise Keeling; Jenny Scott; Angela J. Cree; David A. Johnston; Anton Page; Enrique Cuan-Urquizo; Atul Bhaskar; Martin C. Grossel; David A. Tumbarello; Tracey A. Newman; Andrew J. Lotery; J. Arjuna Ratnayaka
Graphical abstract
Experimental Eye Research | 2016
George Taylor-Walker; Savannah A. Lynn; Eloise Keeling; Rosie Munday; David A. Johnston; Anton Page; Srini Goverdhan; Andrew J. Lotery; J. Arjuna Ratnayaka
Age-related Macular Degeneration (AMD) is a common, irreversible blinding condition that leads to the loss of central vision. AMD has a complex aetiology with both genetic as well as environmental risks factors, and share many similarities with Alzheimers disease. Recent findings have contributed significantly to unravelling its genetic architecture that is yet to be matched by molecular insights. Studies are made more challenging by observations that aged and AMD retinas accumulate the highly pathogenic Alzheimers-related Amyloid beta (Aβ) group of peptides, for which there appears to be no clear genetic basis. Analyses of human donor and animal eyes have identified retinal Aβ aggregates in retinal ganglion cells (RGC), the inner nuclear layer, photoreceptors as well as the retinal pigment epithelium. Aβ is also a major drusen constituent; found correlated with elevated drusen-load and age, with a propensity to aggregate in retinas of advanced AMD. Despite this evidence, how such a potent driver of neurodegeneration might impair the neuroretina remains incompletely understood, and studies into this important aspect of retinopathy remains limited. In order to address this we exploited R28 rat retinal cells which due to its heterogeneous nature, offers diverse neuroretinal cell-types in which to study the molecular pathology of Aβ. R28 cells are also unaffected by problems associated with the commonly used RGC-5 immortalised cell-line, thus providing a well-established model in which to study dynamic Aβ effects at single-cell resolution. Our findings show that R28 cells express key neuronal markers calbindin, protein kinase C and the microtubule associated protein-2 (MAP-2) by confocal immunofluorescence which has not been shown before, but also calretinin which has not been reported previously. For the first time, we reveal that retinal neurons rapidly internalised Aβ1-42, the most cytotoxic and aggregate-prone amongst the Aβ family. Furthermore, exposure to physiological amounts of Aβ1-42 for 24 h correlated with impairment to neuronal MAP-2, a cytoskeletal protein which regulates microtubule dynamics in axons and dendrites. Disruption to MAP-2 was transient, and had recovered by 48 h, although internalised Aβ persisted as discrete puncta for as long as 72 h. To assess whether Aβ could realistically localise to living retinas to mediate such effects, we subretinally injected nanomolar levels of oligomeric Aβ1-42 into wildtype mice. Confocal microscopy revealed the presence of focal Aβ deposits in RGC, the inner nuclear and the outer plexiform layers 8 days later, recapitulating naturally-occurring patterns of Aβ aggregation in aged retinas. Our novel findings describe how retinal neurons internalise Aβ to transiently impair MAP-2 in a hitherto unreported manner. MAP-2 dysfunction is reported in AMD retinas, and is thought to be involved in remodelling and plasticity of post-mitotic neurons. Our insights suggest a molecular pathway by which this could occur in the senescent eye leading to complex diseases such as AMD.
Methods of Molecular Biology | 2017
Matthew Sharp; Anton Page; A. Morris; Roy O. Weller; Roxana O. Carare
In this chapter we describe in detail the tissue processing techniques we employ for the study of cerebral tissue by transmission electron microscopy (TEM). In particular, we explain a technique that enables quantification of changes in cerebral basement membranes at the ultrastructural level. This is significant, as age related pathological conditions affecting the brain are often accompanied by ultrastructural changes in the cerebral vasculature.Briefly, experimental mice are fixed by perfusion and their brains removed. Brains are then vibratomed into 100 μm slices with regions of interest microdissected and processed for TEM following a protocol optimized for the preservation of cerebral tissue. Changes in the thickness of cerebral basement membranes are then quantified using novel software. Some prior knowledge of general TEM specimen preparation and sectioning will be useful when performing this protocol.
Journal of Anatomy | 2017
Eleni Palaiologou; Patricia Goggin; David S. Chatelet; Emma M. Lofthouse; Christopher Torrens; Bram G. Sengers; Jane K. Cleal; Anton Page; Rohan M. Lewis
The syncytiotrophoblast forms a continuous barrier between the maternal and fetal circulations. Here we present a serial block‐face scanning electron microscopy (SBFSEM) study, based on a single image stack, showing pooling of fetal blood underneath a region of stretched syncytiotrophoblast that has become detached from the basement membrane. Erythrocytes are protruding from discrete holes in the syncytiotrophoblast suggesting that, under specific circumstances, the syncytiotrophoblast may be permeable to fetal cells. This observation represents a pathological process but it poses questions about the physical properties and permeability of the syncytiotrophoblast and may represent an early stage in the formation of fibrin deposits in areas of syncytial denudation. This study also illustrates how the 3D images generated by SBFSEM allow the interpretation of structures that could not be understood from a single histological section.
F1000Research | 2018
Savannah A. Lynn; Eloise Keeling; Jennifer M. Dewing; David A. Johnston; Anton Page; Angela J. Cree; David A. Tumbarello; Tracey A. Newman; Andrew J. Lotery; J. Arjuna Ratnayaka
The retinal pigment epithelium (RPE) plays a key role in the pathogenesis of several blinding retinopathies. Alterations to RPE structure and function are reported in Age-related Macular Degeneration, Stargardt and Best disease as well as pattern dystrophies. However, the precise role of RPE cells in disease aetiology remains incompletely understood. Many studies into RPE pathobiology have utilised animal models, which only recapitulate limited disease features. Some studies are also difficult to carry out in animals as the ocular space remains largely inaccessible to powerful microscopes. In contrast, in-vitro models provide an attractive alternative to investigating pathogenic RPE changes associated with age and disease. In this article we describe the step-by-step approach required to establish an experimentally versatile in-vitro culture model of the outer retina incorporating the RPE monolayer and supportive Bruch’s membrane (BrM). We show that confluent monolayers of the spontaneously arisen human ARPE-19 cell-line cultured under optimal conditions reproduce key features of native RPE. These models can be used to study dynamic, intracellular and extracellular pathogenic changes using the latest developments in microscopy and imaging technology. We also discuss how RPE cells from human foetal and stem-cell derived sources can be incorporated alongside sophisticated BrM substitutes to replicate the aged/diseased outer retina in a dish. The work presented here will enable users to rapidly establish a realistic in-vitro model of the outer retina that is amenable to a high degree of experimental manipulation which will also serve as an attractive alternative to using animals. This in-vitro model therefore has the benefit of achieving the 3Rs objective of reducing and replacing the use of animals in research. As well as recapitulating salient structural and physiological features of native RPE, other advantages of this model include its simplicity, rapid set-up time and unlimited scope for detailed single-cell resolution and matrix studies.
Planta | 2001
Matthew J. Terry; Margareta Ryberg; Catharine E. Raitt; Anton Page
Zoological Journal of the Linnean Society | 2009
Nina Rothe; Andrew J. Gooday; Tomas Cedhagen; José Fahrni; J. Alan Hughes; Anton Page; Richard B. Pearce; Jan Pawlowski