Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonel Olckers is active.

Publication


Featured researches published by Antonel Olckers.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Natural selection shaped regional mtDNA variation in humans

Dan Mishmar; Eduardo Ruiz-Pesini; Pawel Golik; Vincent Macaulay; Andrew G. Clark; Seyed H. Hosseini; Martin Brandon; Kirk Easley; Estella B. Chen; Michael D Brown; Rem I. Sukernik; Antonel Olckers; Douglas C. Wallace

Human mtDNA shows striking regional variation, traditionally attributed to genetic drift. However, it is not easy to account for the fact that only two mtDNA lineages (M and N) left Africa to colonize Eurasia and that lineages A, C, D, and G show a 5-fold enrichment from central Asia to Siberia. As an alternative to drift, natural selection might have enriched for certain mtDNA lineages as people migrated north into colder climates. To test this hypothesis we analyzed 104 complete mtDNA sequences from all global regions and lineages. African mtDNA variation did not significantly deviate from the standard neutral model, but European, Asian, and Siberian plus Native American variations did. Analysis of amino acid substitution mutations (nonsynonymous, Ka) versus neutral mutations (synonymous, Ks) (ka/ks) for all 13 mtDNA protein-coding genes revealed that the ATP6 gene had the highest amino acid sequence variation of any human mtDNA gene, even though ATP6 is one of the more conserved mtDNA proteins. Comparison of the ka/ks ratios for each mtDNA gene from the tropical, temperate, and arctic zones revealed that ATP6 was highly variable in the mtDNAs from the arctic zone, cytochrome b was particularly variable in the temperate zone, and cytochrome oxidase I was notably more variable in the tropics. Moreover, multiple amino acid changes found in ATP6, cytochrome b, and cytochrome oxidase I appeared to be functionally significant. From these analyses we conclude that selection may have played a role in shaping human regional mtDNA variation and that one of the selective influences was climate.


American Journal of Human Genetics | 2002

A Back Migration from Asia to Sub-Saharan Africa Is Supported by High-Resolution Analysis of Human Y-Chromosome Haplotypes

Fulvio Cruciani; Piero Santolamazza; Peidong Shen; Vincent Macaulay; Pedro Moral; Antonel Olckers; David Modiano; Susan Holmes; Giovanni Destro-Bisol; Valentina Coia; Douglas C. Wallace; Peter J. Oefner; Antonio Torroni; Luigi Luca Cavalli-Sforza; Rosaria Scozzari; Peter A. Underhill

The variation of 77 biallelic sites located in the nonrecombining portion of the Y chromosome was examined in 608 male subjects from 22 African populations. This survey revealed a total of 37 binary haplotypes, which were combined with microsatellite polymorphism data to evaluate internal diversities and to estimate coalescence ages of the binary haplotypes. The majority of binary haplotypes showed a nonuniform distribution across the continent. Analysis of molecular variance detected a high level of interpopulation diversity (PhiST=0.342), which appears to be partially related to the geography (PhiCT=0.230). In sub-Saharan Africa, the recent spread of a set of haplotypes partially erased pre-existing diversity, but a high level of population (PhiST=0.332) and geographic (PhiCT=0.179) structuring persists. Correspondence analysis shows that three main clusters of populations can be identified: northern, eastern, and sub-Saharan Africans. Among the latter, the Khoisan, the Pygmies, and the northern Cameroonians are clearly distinct from a tight cluster formed by the Niger-Congo-speaking populations from western, central western, and southern Africa. Phylogeographic analyses suggest that a large component of the present Khoisan gene pool is eastern African in origin and that Asia was the source of a back migration to sub-Saharan Africa. Haplogroup IX Y chromosomes appear to have been involved in such a migration, the traces of which can now be observed mostly in northern Cameroon.


American Journal of Human Genetics | 2000

mtDNA Variation in the South African Kung and Khwe—and Their Genetic Relationships to Other African Populations

Yu-Sheng Chen; Antonel Olckers; Theodore G. Schurr; Andreas M. Kogelnik; Kirsi Huoponen; Douglas C. Wallace

The mtDNA variation of 74 Khoisan-speaking individuals (Kung and Khwe) from Schmidtsdrift, in the Northern Cape Province of South Africa, was examined by high-resolution RFLP analysis and control region (CR) sequencing. The resulting data were combined with published RFLP haplotype and CR sequence data from sub-Saharan African populations and then were subjected to phylogenetic analysis to deduce the evolutionary relationships among them. More than 77% of the Kung and Khwe mtDNA samples were found to belong to the major mtDNA lineage, macrohaplogroup L* (defined by a HpaI site at nucleotide position 3592), which is prevalent in sub-Saharan African populations. Additional sets of RFLPs subdivided macrohaplogroup L* into two extended haplogroups-L1 and L2-both of which appeared in the Kung and Khwe. Besides revealing the significant substructure of macrohaplogroup L* in African populations, these data showed that the Biaka Pygmies have one of the most ancient RFLP sublineages observed in African mtDNA and, thus, that they could represent one of the oldest human populations. In addition, the Kung exhibited a set of related haplotypes that were positioned closest to the root of the human mtDNA phylogeny, suggesting that they, too, represent one of the most ancient African populations. Comparison of Kung and Khwe CR sequences with those from other African populations confirmed the genetic association of the Kung with other Khoisan-speaking peoples, whereas the Khwe were more closely linked to non-Khoisan-speaking (Bantu) populations. Finally, the overall sequence divergence of 214 African RFLP haplotypes defined in both this and an earlier study was 0.364%, giving an estimated age, for all African mtDNAs, of 125,500-165,500 years before the present, a date that is concordant with all previous estimates derived from mtDNA and other genetic data, for the time of origin of modern humans in Africa.


American Journal of Human Genetics | 1997

Differential structuring of human populations for homologous X and Y microsatellite loci.

Rosaria Scozzari; Fulvio Cruciani; Patrizia Malaspina; Piero Santolamazza; Bianca Maria Ciminelli; Antonio Torroni; David Modiano; Douglas C. Wallace; Kenneth K. Kidd; Antonel Olckers; Pedro Moral; L. Terrenato; Nejat Akar; Raheel Qamar; Atika Mansoor; Syed Qasim Mehdi; Gianfranco Meloni; Giuseppe Vona; David E. C. Cole; Wangwei Cai; Andrea Novelletto

The global pattern of variation at the homologous microsatellite loci DYS413 (Yq11) and DXS8174 and DXS8175 (Xp22) was analyzed by examination of 30 world populations from four continents, accounting for more than 1,100 chromosomes per locus. The data showed discordant patterns of among- and within-population gene diversity for the Y-linked and the X-linked microsatellites. For the Y-linked polymorphism, all groups of populations displayed high FST values (the correlation between random haplotypes within subpopulations, relative to haplotypes of the total population) and showed a general trend for the haplotypes to cluster in a population-specific way. This was especially true for sub-Saharan African populations. The data also indicated that a large fraction of the variation among populations was due to the accumulation of new variants associated with the radiation process. Europeans exhibited the highest level of within-population haplotype diversity, whereas sub-Saharan Africans showed the lowest. In contrast, data for the two X-linked polymorphisms were concordant in showing lower FST values, as compared with those for DYS413, but higher within-population variances, for African versus non-African populations. Whereas the results for the X-linked loci agreed with a model of greater antiquity for the African populations, those for DYS413 showed a confounding pattern that is apparently at odds with such a model. Possible factors involved in this differential structuring for homologous X and Y microsatellite polymorphisms are discussed.


Frontiers in Genetics | 2013

Characterization of the genetic variation present in CYP3A4 in three South African populations

Britt I. Drögemöller; Marieth Plummer; Lundi Korkie; Gloudi Agenbag; Anke Dunaiski; Dana Niehaus; Liezl Koen; Stefan Gebhardt; Nicol Schneider; Antonel Olckers; Galen Wright; Louise Warnich

The CYP3A4 enzyme is the most abundant human cytochrome P450 (CYP) and is regarded as the most important enzyme involved in drug metabolism. Inter-individual and inter-population variability in gene expression and enzyme activity are thought to be influenced, in part, by genetic variation. Although Southern African individuals have been shown to exhibit the highest levels of genetic diversity, they have been under-represented in pharmacogenetic research to date. Therefore, the aim of this study was to identify genetic variation within CYP3A4 in three South African population groups comprising of 29 Khoisan, 65 Xhosa and 65 Mixed Ancestry (MA) individuals. To identify known and novel CYP3A4 variants, 15 individuals were randomly selected from each of the population groups for bi-directional Sanger sequencing of ~600 bp of the 5′-upstream region and all thirteen exons including flanking intronic regions. Genetic variants detected were genotyped in the rest of the cohort. In total, 24 SNPs were detected, including CYP3A4*12, CYP3A4*15, and the reportedly functional CYP3A4*1B promoter polymorphism, as well as two novel non-synonymous variants. These putatively functional variants, p.R162W and p.Q200H, were present in two of the three populations and all three populations, respectively, and in silico analysis predicted that the former would damage the protein product. Furthermore, the three populations were shown to exhibit distinct genetic profiles. These results confirm that South African populations show unique patterns of variation in the genes encoding xenobiotic metabolizing enzymes. This research suggests that population-specific genetic profiles for CYP3A4 and other drug metabolizing genes would be essential to make full use of pharmacogenetics in Southern Africa. Further investigation is needed to determine if the identified genetic variants influence CYP3A4 metabolism phenotype in these populations.


Neuromuscular Disorders | 2012

Compound heterozygosity in a South African patient with Facioscapulohumeral muscular dystrophy

Antonel Olckers; Annelize van der Merwe; G. Wayne Towers; Chris Retief; Engela Honey; Clara-Maria Schutte

Facioscapulohumeral muscular dystrophy (FSHD) is characterised by weakness and atrophy of the facial and shoulder girdle muscles. The FSHD phenotype segregates as an autosomal dominant trait and is caused by a deletion of an integral number of 3.3 kilobase pair (kb) repeat units on chromosome 4q35. Haplotype and Southern blot analyses of chromosome 4 resulted in the detection of two BlnI resistant deletion fragments, of 24 kb and 34 kb respectively, in a single individual from a South African FSHD family. The patient had moderate facial weakness and marked winging and high-riding of the scapulae with prominent pectoral and proximal arm muscle atrophy and weakness. Quadriceps and anterior tibial muscles were weak and the patient had bilateral foot drop. Although none of his children were symptomatic yet and only two showed very mild clinical signs, one had inherited the 24 kb deletion fragment, while the other two had the 34 kb deletion fragment. Molecular analysis conclusively identified the first compound heterozygous case in the South African FSHD population. However, in accordance with other studies of compound heterozygotes and clinical findings, no direct correlation between the clinical severity of this patient and the number of deletion fragments was observed.


American Journal of Human Genetics | 1999

Combined use of biallelic and microsatellite Y-chromosome polymorphisms to infer affinities among African populations.

Rosaria Scozzari; Fulvio Cruciani; Piero Santolamazza; Patrizia Malaspina; Antonio Torroni; Daniele Sellitto; B Arredi; Giovanni Destro-Bisol; G.F. De Stefano; Olga Rickards; Cristina Martínez-Labarga; David Modiano; G Biondi; Pedro Moral; Antonel Olckers; Douglas C. Wallace; Andrea Novelletto


The Global Practice of Forensic Science | 2014

The History and Current Status of Forensic Science in South Africa

Herman Bernitz; Michael W. Kenyhercz; Burgert Kloppers; Ericka Noelle L'Abbe; Gérard Nicholas Labuschagne; Antonel Olckers; Jolandie Myburgh; Gert Saayman; Maryna Steyn; Kyra E. Stull


Forensic Science International: Genetics Supplement Series | 2013

Training of legal professionals in DNA evidence

Annelize van der Merwe; Arnold Greyling; Antonel Olckers


Forensic Science International: Genetics Supplement Series | 2013

Forensic science in South Africa: Status of the profession

Antonel Olckers; Ryan Blumenthal; Arnold Greyling

Collaboration


Dive into the Antonel Olckers's collaboration.

Top Co-Authors

Avatar

Douglas C. Wallace

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Modiano

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Fulvio Cruciani

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Piero Santolamazza

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Rosaria Scozzari

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Pedro Moral

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Novelletto

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge