Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonella Amato is active.

Publication


Featured researches published by Antonella Amato.


Neurogastroenterology and Motility | 2010

Peripheral motor action of glucagon-like peptide-1 through enteric neuronal receptors

Antonella Amato; Lorenzo Cinci; Alessandra Rotondo; Rosa Serio; Maria-Simonetta Faussone-Pellegrini; Maria Giuliana Vannucchi; Flavia Mulè

Background  Glucagon‐like peptide‐1 (GLP‐1) is a proglucagon‐derived peptide expressed in the enteroendocrine‐L cells of small and large intestine and released in response to meal ingestion. Glucagon‐like peptide‐1 exerts inhibitory effects on gastrointestinal motility through vagal afferents and central nervous mechanisms; however, no data is available about a direct influence on the gastrointestinal wall. Our aim was to investigate the effects of GLP‐1 on the spontaneous and evoked mechanical activity of mouse duodenum and colon and to identify the presence and distribution of GLP‐1 receptors (GLP‐1R) in the muscle coat.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2009

Glucagon-like peptide-2 relaxes mouse stomach through vasoactive intestinal peptide release

Antonella Amato; Sara Baldassano; Rosa Serio; Flavia Mulè

Glucagon-like peptide-2 (GLP-2) influences different aspects of the gastrointestinal function, including epithelial growth, digestion, absorption, motility, and blood flow. Intraluminal pressure from isolated mouse stomach was recorded to investigate whether GLP-2 affects gastric tone and to analyze its mechanism of action. Regional differences between diverse parts of the stomach were also examined using circular muscular strips from fundus and antrum. In the whole stomach, GLP-2 (0.3-100 nM) produced concentration-dependent relaxation with a maximum that was about 75% of relaxation to 1 microM isoproterenol (IC50=2.5 nM). This effect was virtually abolished by desensitization of GLP-2 receptors or by alpha-chymotrypsin. The relaxant response to GLP-2 was not affected by tetrodotoxin, a blocker of neuronal voltage-dependent Na+ channels, but it was significantly reduced by omega-conotoxin GVIA, a blocker of neuronal N-type voltage-operated Ca2+ channels. Nomega-nitro-L-arginine methyl ester, a blocker of nitric oxide synthase, or apamin, a blocker of Ca2+-dependent potassium channels, failed to affect the gastric response to the peptide. However, the relaxation was significantly antagonized by [Lys1,Pro2,5,Arg3,4,Tyr6]VIP7-28, a vasoactive intestinal peptide (VIP) receptor antagonist (GLP-2 maximum effect=45% of relaxation to 1 microM isoproterenol), and virtually abolished by desensitization of the VIP receptors. GLP-2 induced concentration-dependent relaxation in carbachol-precontracted fundic strips but not in antral strips. These results provide the first experimental evidence that GLP-2 is able to induce gastric relaxation acting peripherally on the mouse stomach. The effect appears to be mediated by prejunctional neural release of VIP and confined to fundic region.


Journal of Endocrinology | 2013

Glucagon-like peptide-2 and mouse intestinal adaptation to a high-fat diet.

Sara Baldassano; Antonella Amato; Francesco Cappello; Francesca Rappa; Flavia Mulè

Endogenous glucagon-like peptide-2 (GLP2) is a key mediator of refeeding-induced and resection-induced intestinal adaptive growth. This study investigated the potential role of GLP2 in mediating the mucosal responses to a chronic high-fat diet (HFD). In this view, the murine small intestine adaptive response to a HFD was analyzed and a possible involvement of endogenous GLP2 was verified using GLP2 (3-33) as GLP2 receptor (GLP2R) antagonist. In comparison with animals fed a standard diet, mice fed a HFD for 14 weeks exhibited an increase in crypt-villus mean height (duodenum, 27.5±3.0%; jejunum, 36.5±2.9%; P<0.01), in the cell number per villus (duodenum, 28.4±2.2%; jejunum, 32.0±2.9%; P<0.01), and in Ki67-positive cell number per crypt. No change in the percent of caspase-3-positive cell in the villus-crypt was observed. The chronic exposure to a HFD also caused a significant increase in GLP2 plasma levels and in GLP2R intestinal expression. Daily administration of GLP2 (3-33) (30-60  ng) for 4 weeks did not modify the crypt-villus height in control mice. In HFD-fed mice, chronic treatment with GLP2 (3-33) reduced the increase in crypt-villus height and in the cell number per villus through reduction of cell proliferation and increase in apoptosis. This study provides the first experimental evidence for a role of endogenous GLP2 in the intestinal adaptation to HFD in obese mice and for a dysregulation of the GLP2/GLP2R system after a prolonged HFD.


Peptides | 2011

Glucagon-like peptide-1 relaxes gastric antrum through nitric oxide in mice.

Alessandra Rotondo; Antonella Amato; Laura Lentini; Sara Baldassano; Flavia Mulè

Glucagon-like-peptide-1 (GLP-1) is a proglucagon-derived peptide expressed in the intestinal enteroendocrine-L cells and released after meal ingestion. GLP-1 reduces postprandial glycemia not only by its hormonal effects, but also by its inhibitory effects on gastrointestinal motility. Recently, we showed that GLP-1 acts in the enteric nervous system of mouse intestine. Therefore our working hypothesis was that GLP-1 may have also a direct influence on the gastric mechanical activity since the major part of experimental studies about its involvement in the regulation of gastric motility have been conducted in in vivo conditions. The purposes of this study were (i) to examine exogenous GLP-1 effects on mouse gastric mechanical activity using isolated whole stomach; (ii) to clarify the regional activity of GLP-1 using circular muscular strips from gastric fundus or antrum; (iii) to analyze the mechanism of action underlying the observed effects; (iv) to verify regional differences of GLP-1 receptors (GLP-1R) expression by RT-PCR. In the whole stomach GLP-1 caused concentration-dependent relaxation significantly anatagonized by exendin (9-39), an antagonist of GLP-1R and abolished by tetrodotoxin (TTX) or N(ω)-nitro-l-arginine methyl ester (l-NAME), inhibitor of nitric oxide (NO) synthase. GLP-1 was without any effect in fundic strips, but it induced concentration-dependent relaxation in carbachol-precontracted antral strips. The effect was abolished by TTX or l-NAME. RT-PCR analysis revealed a higher expression of GLP-1R mRNA in antrum than in fundus. These results suggest that exogenous GLP-1 is able to reduce mouse gastric motility by acting peripherally in the antral region, through neural NO release.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

Role of cholinergic neurons in the motor effects of glucagon-like peptide-2 in mouse colon

Antonella Amato; Alessandra Rotondo; Lorenzo Cinci; Sara Baldassano; Maria Giuliana Vannucchi; Flavia Mulè

Glucagon-like peptide-2 (GLP-2) reduces mouse gastric tone and small intestine transit, but its action on large intestine motility is still unknown. The purposes of the present study were 1) to examine the influence of GLP-2 on spontaneous mechanical activity and on neurally evoked responses, by recording intraluminal pressure from mouse isolated colonic segments; 2) to characterize GLP-2 mechanism of action; and 3) to determine the distribution of GLP-2 receptor (GLP-2R) in the mouse colonic muscle coat by immunohistochemistry. Exogenous GLP-2 (0.1-300 nM) induced a concentration-dependent reduction of the spontaneous mechanical activity, which was abolished by the desensitization of GLP-2 receptor or by tetrodotoxin, a voltage-dependent Na(+)-channel blocker. GLP-2 inhibitory effect was not affected by N(ω)-nitro-l-arginine methyl ester (a nitric oxide synthase inhibitor), apamin (a blocker of small conductance Ca(2+)-dependent K(+) channels), or [Lys1,Pro2,5,Arg3,4,Tyr6]VIP(7-28) (a VIP receptor antagonist), but it was prevented by atropine or pertussis toxin (PTX), a G(i/o) protein inhibitor. Proximal colon responses to electrical field stimulation were characterized by nitrergic relaxation, which was followed by cholinergic contraction. GLP-2 reduced only the cholinergic evoked contractions. This effect was almost abolished by GLP-2 receptor desensitization or PTX. GLP-2 failed to affect the contractile responses to exogenous carbachol. GLP-2R immunoreactivity (IR) was detected only in the neuronal cells of both plexuses of the colonic muscle coat. More than 50% of myenteric GLP-2R-IR neurons shared the choline acetyltransferase IR. In conclusion, the activation of GLP-2R located on cholinergic neurons may modulate negatively the colonic spontaneous and electrically evoked contractions through inhibition of acetylcholine release. The effect is mediated by G(i) protein.


Journal of Endocrinology | 2014

Exogenous glucagon-like peptide 1 reduces contractions in human colon circular muscle.

Antonella Amato; Sara Baldassano; Rosa Liotta; Rosa Serio; Flavia Mulè

Glucagon-like peptide 1 (GLP1) is a naturally occurring peptide secreted by intestinal L-cells. Though its primary function is to serve as an incretin, GLP1 reduces gastrointestinal motility. However, only a handful of animal studies have specifically evaluated the influence of GLP1 on colonic motility. Consequently, the aims of this study were to investigate the effects induced by exogenous GLP1, to analyze the mechanism of action, and to verify the presence of GLP1 receptors (GLP1Rs) in human colon circular muscular strips. Organ bath technique, RT-PCR, western blotting, and immunofluorescence were used. In human colon, exogenous GLP1 reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions without affecting the frequency and the resting basal tone. This inhibitory effect was significantly reduced by exendin (9-39), a GLP1R antagonist, which per se significantly increased the spontaneous mechanical activity. Moreover, it was abolished by tetrodotoxin, a neural blocker, or Nω-nitro-l-arginine - a blocker of neuronal nitric oxide synthase (nNOS). The biomolecular analysis revealed a genic and protein expression of the GLP1R in the human colon. The double-labeling experiments with anti-neurofilament or anti-nNOS showed, for the first time, that immunoreactivity for the GLP1R was expressed in nitrergic neurons of the myenteric plexus. In conclusion, the results of this study suggest that GLP1R is expressed in the human colon and, once activated by exogenous GLP1, mediates an inhibitory effect on large intestine motility through NO neural release.


Regulatory Peptides | 2014

GLP-2: What do we know? What are we going to discover?

Sara Baldassano; Antonella Amato

Glucagon-like peptide 2 [GLP-2] is a 33-amino acid peptide released from the mucosal enteroendocrine L-cells of the intestine. The actions of GLP-2 are transduced by the GLP-2 receptor [GLP-2R], which is localized in the neurons of the enteric nervous system but not in the intestinal epithelium, indicating an indirect mechanism of action. GLP-2 is well known for its trophic role within the intestine and interest in GLP-2 is now reviving based on the approval of the GLP-2R agonist for treatment of short bowel syndrome [SBS]. Recently it also seems to be involved in glucose homeostasis. The aim of this review is to outline the importance of neuroendocrine peptides, specifically of GLP-2 in the enteric modulation of the gastrointestinal function and to focus on new works in order to present an innovative picture of GLP-2.


European Journal of Pharmacology | 2014

Effects of menthol on circular smooth muscle of human colon: Analysis of the mechanism of action

Antonella Amato; Rosa Liotta; Flavia Mulè

Menthol is the major constituent of peppermint oil, an herbal preparation commonly used to treat nausea, spasms during colonoscopy and irritable bowel disease. The mechanism responsible for its spasmolytic action remains unclear. The aims of this study were to investigate the effects induced by menthol on the human distal colon mechanical activity in vitro and to analyze the mechanism of action. The spontaneous or evoked-contractions of the circular smooth muscle were recorded using vertical organ bath. Menthol (0.1 mM-30 mM) reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions without affecting the frequency and the resting basal tone. The inhibitory effect was not affected by 5-benzyloxytryptamine (1 μM), a transient receptor potential-melastatin8 channel antagonist, or tetrodotoxin (1 μM), a neural blocker, or 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (10 µM), inhibitor of nitric oxide (NO)-sensitive soluble guanylyl cyclase, or tetraethylammonium (10 mM), a blocker of potassium (K+)-channels. On the contrary, nifedipine (3 nM), a voltage-activated L-type Ca2+ channel blocker, significantly reduced the inhibitory menthol actions. Menthol also reduced in a concentration-dependent manner the contractile responses caused by exogenous application of Ca2+ (75-375 μM) in a Ca2+-free solution, or induced by potassium chloride (KCl; 40 mM). Moreover menthol (1-3 mM) strongly reduced the electrical field stimulation (EFS)-evoked atropine-sensitive contractions and the carbachol-contractile responses. The present results suggest that menthol induces spasmolytic effects in human colon circular muscle inhibiting directly the gastrointestinal smooth muscle contractility, through the block of Ca2+ influx through sarcolemma L-type Ca2+ channels.


Journal of Cellular Physiology | 2002

Have p53 gene mutations and protein expression a different biological significance in colorectal cancer

Viviana Bazan; Manuela Migliavacca; Carla Tubiolo; Marcella Macaluso; Ines Zanna; Simona Corsale; Antonella Amato; Valentina Calò; Gabriella Dardanoni; Vincenza Morello; Mario La Farina; Ida Albanese; Rosa Maria Tomasino; Nicola Gebbia; Antonio Russo

p53 alterations are considered the most common genetic events in many types of neoplasms, including colorectal carcinoma (CRC). These alterations include mutations of the gene and/or overexpression of the protein. The aim of our study was to assess whether in 160 patients undergoing resective surgery for primary operable CRC there was an association between p53 mutations and protein overexpression and between these and other biological variables, such as cell DNA content (DNA‐ploidy) and S‐phase fraction (SPF), and the traditional clinicopathological variables. p53 mutations, identified by PCR‐SSCP‐sequencing analysis, were found in 68/160 patients (43%) and positive staining for p53 protein, detected with the monoclonal antibody DO‐7, was present in 48% (77/160) of the cases, with agreement of 57% (91/160). In particular, a significant association was found between increased p53 expression and genetic alterations localized in the conserved regions of the gene or in the L3 DNA‐binding domain and the specific type of mutation. Furthermore, both overexpression of p53 and mutations in the conserved areas of the gene were found more frequently in distal than in proximal CRCs, suggesting that they might be “biologically different diseases.” Although p53 mutations in conserved areas were associated with flow cytometric variables, overexpression of p53 and mutations in its L3 domain were only related respectively to DNA‐aneuploidy and high SPF. These data may reflect the complex involvement of p53 in the different pathways regulating cell‐cycle progression. In conclusion, the combination of the mutational status and immunohistochemistry of p53, and flow cytometric data may provide an important insight into the biological features of CRCs. J. Cell. Physiol. 191: 237–246, 2002.


Peptides | 2011

Gastric relaxation induced by glucagon-like peptide-2 in mice fed a high-fat diet or fasted

Alessandra Rotondo; Antonella Amato; Sara Baldassano; Laura Lentini; Flavia Mulè

Glucagon-like peptide-2 (GLP-2) is a nutrient-responsive gut hormone that increases the intestinal absorption. Exogenous GLP-2 also induces gastric fundus relaxation with possible implications for emptying rate or feeling of satiety. GLP-2 actions are mediated by GLP-2 receptor (GLP-2R), located on enteric neurons and myofibroblasts in murine gastrointestinal tract. Because it is not known whether changes in the endogenous GLP-2R levels occur in different nutritional states, we examined the GLP-2R gene and protein expression in gastric fundus from standard diet (STD)-fed, 12-h and 24-h fasted and re-fed, or high-fat diet (HFD)-fed mice and we analyzed the mechanical responses to exogenous GLP-2 in the stomach from different groups of animals. GLP-2 expression was examined using real-time reverse-transcription polymerase chain reaction and western blotting. The gastric mechanical activity from whole-organ was recorded in vitro as changes of intraluminal pressure. GLP-2R expression in fundic region from 12-h or 24-h fasted mice was reduced in comparison with STD-fed animals and returned to control values in re-fed mice, while it was increased in HFD-fed mice. The exogenous GLP-2 efficacy in inducing gastric relaxation, normalized to isoproterenol response, was decreased in stomach from fasted mice and it was increased in stomach from HFD-fed mice in comparison with STD-fed mice. In conclusion, the nutritional state influences GLP-2R expression in murine gastric preparations. The changes in the GLP-2R expression are associated with modifications of GLP-2 gastric relaxant efficacy. This could represent an adaptive response to reduced or increased nutrient intake.

Collaboration


Dive into the Antonella Amato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge