Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonella Antenora is active.

Publication


Featured researches published by Antonella Antenora.


Lancet Neurology | 2013

Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data

Heike Jacobi; Kathrin Reetz; Sophie Tezenas du Montcel; Peter Bauer; Caterina Mariotti; Lorenzo Nanetti; Maria Rakowicz; Anna Sulek; Alexandra Durr; Perrine Charles; Alessandro Filla; Antonella Antenora; Ludger Schöls; Julia Schicks; Jon Infante; Jun Suk Kang; Dagmar Timmann; Roberto Di Fabio; Marcella Masciullo; László Balikó; Béla Melegh; Sylvia Boesch; Katrin Bürk; Annkathrin Peltz; Jörg B. Schulz; Isabelle Dufaure-Garé; Thomas Klockgether

BACKGROUND Spinocerebellar ataxias (SCAs) are autosomal, dominantly inherited, fully penetrant neurodegenerative diseases. Our aim was to study the preclinical stage of the most common SCAs: SCA1, SCA2, SCA3, and SCA6. METHODS Between Sept 13, 2008, and Dec 1, 2011, offspring or siblings of patients with SCA1, SCA2, SCA3, or SCA6 were enrolled into a prospective, longitudinal observational study at 14 European centres. To be eligible for inclusion in our study, individuals had to have no ataxia and be aged 18-50 years if directly related to individuals with SCA1, SCA2, or SCA3, or 35-70 years if directly related to individuals with SCA6. We did anonymous genetic testing to identify mutation carriers. We assessed participants with clinical scales, questionnaires, and performance-based coordination tests. In eight of the 14 centres, participants underwent MRI. We analysed relations between outcome variables and time from onset (defined as the difference between present age and estimated age at ataxia onset). This study is registered with ClinicalTrials.gov, number NCT01037777. FINDINGS 276 participants met inclusion criteria and agreed to participate, of whom 12 (4%) were excluded from final analysis because DNA samples were missing or genotyping failed. Estimated time from onset was -9 years (IQR -13 to -6) in 50 carriers of the SCA1 mutation, -12 years (-15 to -9) in 31 SCA2 mutation carriers, -8 years (-11 to -6) in 26 SCA3 mutation carriers, and -18 years (-22 to -16) in 16 SCA6 mutation carriers. Compared with non-carriers of each mutation, SCA1 mutation carriers had higher median scores on the scale for the assessment and rating of ataxia (SARA; 0·5 [IQR 0-1·0] vs 0 [0-0]; p=0·0052), as did SCA2 mutation carriers (0·5 [0-2·0] vs 0 [0-0·5]; p=0·0037). SCA2 mutation carriers had lower SCA functional index scores than did non-carriers (-0·43 [-0·91 to -0·07] vs 0·09 [-0·30 to 0·56]; p=0·0007). SCA2 mutation carriers had worse composite cerebellar functional scores than did their non-carrier counterparts (0·915 [0·861-0·959] vs 0·849 [0·764-0·886]; p=0·0039). All other differences between carriers and non-carriers were non-significant. In SCA1 and SCA2 mutation carriers, SARA scores were increased in participants who were closer to the estimated age at onset (SCA1: r=0·36, p=0·0112; SCA2: r=0·50, p=0·0038). 83 individuals (30%) underwent MRI. Voxel-based morphometry showed grey-matter loss in the brainstem and cerebellum in SCA1 and SCA2 mutation carriers, and normalised brainstem volume was lower in SCA2 mutation carriers (median 0·015, range 0·012-0·016) than in non-carriers (0·019, 0·017-0·021; p=0·0107). INTERPRETATION Preclinical SCA1 and SCA2 mutation carriers seem to have mild coordination deficits and abnormalities in the brain that are more common in carriers who are closer to the estimated onset of ataxia. Individuals in this early disease stage could be targeted in future preventive trials. FUNDING ERA-Net E-Rare and Polish Ministry of Science and Higher Education.


Lancet Neurology | 2015

Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: A longitudinal cohort study

Heike Jacobi; Sophie Tezenas du Montcel; Peter Bauer; Paola Giunti; Arron Cook; Robyn Labrum; Michael H Parkinson; Alexandra Durr; Alexis Brice; Perrine Charles; Cecilia Marelli; Caterina Mariotti; Lorenzo Nanetti; Marta Panzeri; Maria Rakowicz; Anna Sulek; Anna Sobanska; Tanja Schmitz-Hübsch; Ludger Schöls; Holger Hengel; László Balikó; Béla Melegh; Alessandro Filla; Antonella Antenora; Jon Infante; José Berciano; Bart P. van de Warrenburg; Dagmar Timmann; Sandra Szymanski; Sylvia Boesch

BACKGROUND Spinocerebellar ataxias are dominantly inherited neurodegenerative diseases. As potential treatments for these diseases are being developed, precise knowledge of their natural history is needed. We aimed to study the long-term disease progression of the most common spinocerebellar ataxias: SCA1, SCA2, SCA3, and SCA6. Furthermore, we aimed to establish the order and occurrence of non-ataxia symptoms, and identify predictors of disease progression. METHODS In this longitudinal cohort study (EUROSCA), we enrolled men and women with positive genetic testing for SCA1, SCA2, SCA3, or SCA6 and with progressive, otherwise unexplained ataxia who were aged 18 years or older from 17 ataxia referral centres in ten European countries. Patients were seen every year for 3 years, and at irregular intervals thereafter. The primary outcome was the scale for the assessment and rating of ataxia (SARA), and the inventory of non-ataxia signs (INAS). We used linear mixed models to analyse progression. To account for dropouts, we applied a pattern-mixture model. This study is registered with ClinicalTrials.gov, number NCT02440763. FINDINGS Between July 1, 2005, and Aug 31, 2006, 526 patients with SCA1, SCA2, SCA3, or SCA6 were enrolled. We analysed data for 462 patients with at least one follow-up visit. Median observation time was 49 months (IQR 35-72). SARA progression data were best fitted with a linear model in all genotypes. Annual SARA score increase was 2.11 (SE 0.12) in patients with SCA1, 1.49 (0.07) in patients with SCA2, 1.56 (0.08) in patients with SCA3, and 0.80 (0.09) in patients with SCA6. The increase of the number of non-ataxia signs reached a plateau in SCA1, SCA2, and SCA3. In patients with SCA6, the number of non-ataxia symptoms increased linearly, but more slowly than in patients with SCA1, SCA2, and SCA3 (p<0.0001). Factors that were associated with faster progression of the SARA score were short duration of follow-up (p=0.0179), older age at inclusion (0.04 [SE 0.02] per additional year; p=0.0476), and longer repeat expansions (0.06 [SE 0.02] per additional repeat unit; p=0.0128) in SCA1, short duration of follow-up (p<0.0001), lower age at onset (-0.02 [SE 0.01] per additional year; p=0.0014), and lower baseline SARA score (-0.02 [SE 0.01] per additional SARA point; p=0.0083) in SCA2, and lower baseline SARA score (-0.03 [SE 0.01] per additional SARA point; p=0·0195) in SCA6. In SCA3, we did not identify factors that affected progression of the SARA score. INTERPRETATION Our study provides quantitative data on the progression of the most common spinocerebellar ataxias based on a follow-up period that exceeds those of previous studies. Our data could prove useful for sample size calculation and patient stratification in interventional trials. FUNDING EU FP6 (EUROSCA), German Ministry of Education and Research (BMBF; GeneMove), Polish Ministry of Science, EU FP7 (NEUROMICS).


PLOS ONE | 2011

A Combined Nucleic Acid and Protein Analysis in Friedreich Ataxia: Implications for Diagnosis, Pathogenesis and Clinical Trial Design

Francesco Saccà; Giorgia Puorro; Antonella Antenora; Angela Marsili; Alessandra Denaro; Raffaele Piro; Pierpaolo Sorrentino; Chiara Pane; Alessandra Tessa; Vincenzo Morra; Sergio Cocozza; Giuseppe De Michele; Filippo M. Santorelli; Alessandro Filla

Background Friedreichs ataxia (FRDA) is the most common hereditary ataxia among caucasians. The molecular defect in FRDA is the trinucleotide GAA expansion in the first intron of the FXN gene, which encodes frataxin. No studies have yet reported frataxin protein and mRNA levels in a large cohort of FRDA patients, carriers and controls. Methodology/Principal Findings We enrolled 24 patients with classic FRDA phenotype (cFA), 6 late onset FRDA (LOFA), all homozygous for GAA expansion, 5 pFA cases who harbored the GAA expansion in compound heterozygosis with FXN point mutations (namely, p.I154F, c.482+3delA, p.R165P), 33 healthy expansion carriers, and 29 healthy controls. DNA was genotyped for GAA expansion, mRNA/FXN was quantified in real-time, and frataxin protein was measured using lateral-flow immunoassay in peripheral blood mononuclear cells (PBMCs). Mean residual levels of frataxin, compared to controls, were 35.8%, 65.6%, 33%, and 68.7% in cFA, LOFA, pFA and healthy carriers, respectively. Comparison of both cFA and pFA with controls resulted in 100% sensitivity and specificity, but there was overlap between LOFA, carriers and controls. Frataxin levels correlated inversely with GAA1 and GAA2 expansions, and directly with age at onset. Messenger RNA expression was reduced to 19.4% in cFA, 50.4% in LOFA, 52.7% in pFA, 53.0% in carriers, as compared to controls (p<0.0001). mRNA levels proved to be diagnostic when comparing cFA with controls resulting in 100% sensitivity and specificity. In cFA and LOFA patients mRNA levels correlated directly with protein levels and age at onset, and inversely with GAA1 and GAA2. Conclusion/Significance We report the first explorative study on combined frataxin and mRNA levels in PBMCs from a cohort of FRDA patients, carriers and healthy individuals. Lateral-flow immunoassay differentiated cFA and pFA patients from controls, whereas determination of mRNA in q-PCR was sensitive and specific only in cFA.


Movement Disorders | 2011

Epoetin alfa increases frataxin production in Friedreich's ataxia without affecting hematocrit

Francesco Saccà; Raffaele Piro; Giuseppe De Michele; Fabio Acquaviva; Antonella Antenora; Guido Carlomagno; Sergio Cocozza; Alessandra Denaro; Anna Guacci; Angela Marsili; Gaetano Perrotta; Giorgia Puorro; Antonio Cittadini; Alessandro Filla

Objective of the study was to test the efficacy, safety, and tolerability of two single doses of Epoetin alfa in patients with Friedreichs ataxia. Ten patients were treated subcutaneously with 600 IU/kg for the first dose, and 3 months later with 1200 IU/kg. Epoetin alfa had no acute effect on frataxin, whereas a delayed and sustained increase in frataxin was evident at 3 months after the first dose (+35%; P < 0.05), and up to 6 months after the second dose (+54%; P < 0.001). The treatment was well tolerated and did not affect hematocrit, cardiac function, and neurological scale. Single high dose of Epoetin alfa can produce a considerably larger and sustained effect when compared with low doses and repeated administration schemes previously adopted. In addition, no hemoglobin increase was observed, and none of our patients required phlebotomy, indicating lack of erythropoietic effect of single high dose of erythropoietin.


PLOS ONE | 2014

PDCD10 Gene Mutations in Multiple Cerebral Cavernous Malformations

Maria Sole Cigoli; Francesca Avemaria; Stefano De Benedetti; Giovanni P. Gesu; Lucio G iordano Accorsi; Stefano Parmigiani; Maria Franca Corona; Valeria Capra; Andrea Mosca; Simona Giovannini; Francesca Notturno; Fausta Ciccocioppo; Lilia Volpi; Margherita Estienne; Giuseppe De Michele; Antonella Antenora; Leda Bilo; Antonietta Tavoni; Nelia Zamponi; Enrico Alfei; Giovanni Baranello; Daria Riva; Silvana Penco

Cerebral cavernous malformations (CCMs) are vascular abnormalities that may cause seizures, intracerebral haemorrhages, and focal neurological deficits. Familial form shows an autosomal dominant pattern of inheritance with incomplete penetrance and variable clinical expression. Three genes have been identified causing familial CCM: KRIT1/CCM1, MGC4607/CCM2, and PDCD10/CCM3. Aim of this study is to report additional PDCD10/CCM3 families poorly described so far which account for 10-15% of hereditary cerebral cavernous malformations. Our group investigated 87 consecutive Italian affected individuals (i.e. positive Magnetic Resonance Imaging) with multiple/familial CCM through direct sequencing and Multiplex Ligation-Dependent Probe Amplification (MLPA) analysis. We identified mutations in over 97.7% of cases, and PDCD10/CCM3 accounts for 13.1%. PDCD10/CCM3 molecular screening revealed four already known mutations and four novel ones. The mutated patients show an earlier onset of clinical manifestations as compared to CCM1/CCM2 mutated patients. The study of further families carrying mutations in PDCD10/CCM3 may help define a possible correlation between genotype and phenotype; an accurate clinical follow up of the subjects would help define more precisely whether mutations in PDCD10/CCM3 lead to a characteristic phenotype.


Frontiers in Neurology | 2012

Antiphospholipid-Related Chorea

Silvio Peluso; Antonella Antenora; Anna De Rosa; Alessandro Roca; Gennaro Maddaluno; Vincenzo Morra; Giuseppe De Michele

Chorea is a movement disorder which may be associated with immunologic diseases, in particular in the presence of antiphospholipid antibodies (aPL). Choreic movements have been linked to the isolated presence of plasmatic aPL, or to primary, or secondary antiphospholipid syndrome. The highest incidence of aPL-related chorea is detected in children and females. The presentation of chorea is usually subacute and the course monophasic. Choreic movements can be focal, unilateral, or generalized. High plasmatic titers of aPL in a choreic patient can suggest the diagnosis of aPL-related chorea; neuroimaging investigation does not provide much additional diagnostic information. The most relevant target of aPL is β2-glycoprotein I, probably responsible for the thrombotic manifestations of antiphospholipid syndrome. Etiology of the movement disorder is not well understood but a neurotoxic effect of aPL has been hypothesized, leading to impaired basal ganglia cell function and development of neuroinflammation. Patients affected by aPL-related chorea have an increased risk of thrombosis and should receive antiplatelet or anticoagulant treatment.


The Cerebellum | 2013

Somatosensory Temporal Discrimination Threshold Is Increased in Patients with Cerebellar Atrophy

Fiore Manganelli; Raffaele Dubbioso; Chiara Pisciotta; Antonella Antenora; Maria Nolano; Giuseppe De Michele; Alessandro Filla; Alfredo Berardelli; Lucio Santoro

Processing of time in the millisecond range seems to depend on cerebellar function and it can be assessed by using the somatosensory temporal discrimination threshold testing. No studies have yet investigated this temporal discrimination task in patients with cerebellar atrophy. Eleven patients with degenerative cerebellar ataxia and 11 controls underwent somatosensory temporal discrimination threshold evaluation. The degree of cerebellar dysfunction was measured by the International Cooperative Ataxia Rating Scale. Somatosensory temporal discrimination threshold was higher in patients compared to controls for each stimulated site (hand, neck, and eye). Age, disease duration, and International Cooperative Ataxia Rating Scale scores were not correlated to somatosensory temporal discrimination threshold. Somatosensory temporal discrimination threshold is abnormal in patients with cerebellar atrophy. These findings suggest that the cerebellum plays a role in modulating the somatosensory temporal discrimination threshold and confirm the role of cerebellum in the processing of time in the millisecond range.


Movement Disorders | 2016

Long-term effect of epoetin alfa on clinical and biochemical markers in friedreich ataxia

Francesco Saccà; Giorgia Puorro; Angela Marsili; Antonella Antenora; Chiara Pane; Carlo Casali; Christian Marcotulli; Giovanni Defazio; Daniele Liuzzi; Chiara Tatillo; Donata Maria Cambriglia; Giuseppe Schiano di Cola; Luigi Giuliani; Vincenzo Guardasole; Andrea Salzano; Antonio Ruvolo; Anna De Rosa; Antonio Cittadini; Giuseppe De Michele; Alessandro Filla

Friedreich ataxia is an autosomal recessive disease with no available therapy. Clinical trials with erythropoietin in Friedreich ataxia patients have yielded conflicting results, and the long‐term effect of the drug remains unknown.


Brain | 2017

Hereditary spastic paraplegia type 5: Natural history, biomarkers and a randomized controlled trial

Ludger Schöls; Tim W. Rattay; Peter Martus; Christoph Meisner; Jonathan Baets; Imma Fischer; Christine Jägle; Matthew J. Fraidakis; Andrea Martinuzzi; Jonas Alex Morales Saute; Marina Scarlato; Antonella Antenora; Claudia Stendel; Philip Höflinger; Charles Marques Lourenço; Lisa Abreu; Katrien Smets; Martin Paucar; Tine Deconinck; Dana M. Bis; Sarah Wiethoff; Peter Bauer; Alessia Arnoldi; Wilson Marques; Laura Bannach Jardim; Stefan Hauser; Chiara Criscuolo; Alessandro Filla; Stephan Züchner; Maria Teresa Bassi

Spastic paraplegia type 5 (SPG5) is a rare subtype of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative disorders defined by progressive neurodegeneration of the corticospinal tract motor neurons. SPG5 is caused by recessive mutations in the gene CYP7B1 encoding oxysterol-7α-hydroxylase. This enzyme is involved in the degradation of cholesterol into primary bile acids. CYP7B1 deficiency has been shown to lead to accumulation of neurotoxic oxysterols. In this multicentre study, we have performed detailed clinical and biochemical analysis in 34 genetically confirmed SPG5 cases from 28 families, studied dose-dependent neurotoxicity of oxysterols in human cortical neurons and performed a randomized placebo-controlled double blind interventional trial targeting oxysterol accumulation in serum of SPG5 patients. Clinically, SPG5 manifested in childhood or adolescence (median 13 years). Gait ataxia was a common feature. SPG5 patients lost the ability to walk independently after a median disease duration of 23 years and became wheelchair dependent after a median 33 years. The overall cross-sectional progression rate of 0.56 points on the Spastic Paraplegia Rating Scale per year was slightly lower than the longitudinal progression rate of 0.80 points per year. Biochemically, marked accumulation of CYP7B1 substrates including 27-hydroxycholesterol was confirmed in serum (n = 19) and cerebrospinal fluid (n = 17) of SPG5 patients. Moreover, 27-hydroxycholesterol levels in serum correlated with disease severity and disease duration. Oxysterols were found to impair metabolic activity and viability of human cortical neurons at concentrations found in SPG5 patients, indicating that elevated levels of oxysterols might be key pathogenic factors in SPG5. We thus performed a randomized placebo-controlled trial (EudraCT 2015-000978-35) with atorvastatin 40 mg/day for 9 weeks in 14 SPG5 patients with 27-hydroxycholesterol levels in serum as the primary outcome measure. Atorvastatin, but not placebo, reduced serum 27-hydroxycholesterol from 853 ng/ml [interquartile range (IQR) 683-1113] to 641 (IQR 507-694) (-31.5%, P = 0.001, Mann-Whitney U-test). Similarly, 25-hydroxycholesterol levels in serum were reduced. In cerebrospinal fluid 27-hydroxycholesterol was reduced by 8.4% but this did not significantly differ from placebo. As expected, no effects were seen on clinical outcome parameters in this short-term trial. In this study, we define the mutational and phenotypic spectrum of SPG5, examine the correlation of disease severity and progression with oxysterol concentrations, and demonstrate in a randomized controlled trial that atorvastatin treatment can effectively lower 27-hydroxycholesterol levels in serum of SPG5 patients. We thus demonstrate the first causal treatment strategy in hereditary spastic paraplegia.


Annals of clinical and translational neurology | 2017

The Multiple Faces of Spinocerebellar Ataxia type 2

Antonella Antenora; Carlo Rinaldi; Alessandro Roca; Chiara Pane; Maria Lieto; Francesco Saccà; Silvio Peluso; Giuseppe De Michele; Alessandro Filla

Spinocerebellar ataxia type 2 (SCA2) is among the most common forms of autosomal dominant ataxias, accounting for 15% of the total families. Occurrence is higher in specific populations such as the Cuban and Southern Italian. The disease is caused by a CAG expansion in ATXN2 gene, leading to abnormal accumulation of the mutant protein, ataxin‐2, in intracellular inclusions. The clinical picture is mainly dominated by cerebellar ataxia, although a number of other neurological signs have been described, ranging from parkinsonism to motor neuron involvement, making the diagnosis frequently challenging for neurologists, particularly when information about the family history is not available. Although the functions of ataxin‐2 have not been completely elucidated, the protein is involved in mRNA processing and control of translation. Recently, it has also been shown that the size of the CAG repeat in normal alleles represents a risk factor for ALS, suggesting that ataxin‐2 plays a fundamental role in maintenance of neuronal homeostasis.

Collaboration


Dive into the Antonella Antenora's collaboration.

Top Co-Authors

Avatar

Alessandro Filla

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giuseppe De Michele

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Silvio Peluso

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Francesco Saccà

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Anna De Rosa

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonilda Bilo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Sabina Pappatà

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Bauer

University of Tübingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge