Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonella Casola is active.

Publication


Featured researches published by Antonella Casola.


Journal of Virology | 2007

Retinoic Acid-Inducible Gene I Mediates Early Antiviral Response and Toll-Like Receptor 3 Expression in Respiratory Syncytial Virus-Infected Airway Epithelial Cells

Ping Liu; Mohammad Jamaluddin; Kui Li; Roberto P. Garofalo; Antonella Casola; Allan R. Brasier

ABSTRACT Respiratory syncytial virus (RSV) is one of the most common viral pathogens causing severe lower respiratory tract infections in infants and young children. Infected host cells detect and respond to RNA viruses using different mechanisms in a cell-type-specific manner, including retinoic acid-inducible gene I (RIG-I)-dependent and Toll-like receptor (TLR)-dependent pathways. Because the relative contributions of these two pathways in the recognition of RSV infection are unknown, we examined their roles in this study. We found that RIG-I helicase binds RSV transcripts within 12 h of infection. Short interfering RNA (siRNA)-mediated RIG-I “knockdown” significantly inhibited early nuclear factor-κB (NF-κB) and interferon response factor 3 (IRF3) activation 9 h postinfection (p.i.). Consistent with this finding, RSV-induced beta interferon (IFN-β), interferon-inducible protein 10 (IP-10), chemokine ligand 5 (CCL-5), and IFN-stimulated gene 15 (ISG15) expression levels were decreased in RIG-I-silenced cells during the early phase of infection but not at later times (18 h p.i.). In contrast, siRNA-mediated TLR3 knockdown did not affect RSV-induced NF-κB binding but did inhibit IFN-β, IP-10, CCL-5, and ISG15 expression at late times of infection. Further studies revealed that TLR3 knockdown significantly reduced NF-κB/RelA transcription by its ability to block the activating phosphorylation of NF-κB/RelA at serine residue 276. We further found that TLR3 induction following RSV infection was regulated by RIG-I-dependent IFN-β secreted from infected airway epithelial cells and was mediated by both IFN response-stimulated element (ISRE) and signal transducer and activator of transcription (STAT) sites in its proximal promoter. Together these findings indicate distinct temporal roles of RIG-I and TLR3 in mediating RSV-induced innate immune responses, which are coupled to distinct pathways controlling NF-κB activation.


The Journal of Infectious Diseases | 2002

Respiratory Syncytial Virus–Induced Activation of Nuclear Factor–κB in the Lung Involves Alveolar Macrophages and Toll-Like Receptor 4–Dependent Pathways

Helene A. Haeberle; Ryuta Takizawa; Antonella Casola; Allan R. Brasier; Hans Juergen Dieterich; Nico van Rooijen; Zoran Gatalica; Roberto P. Garofalo

The transcription factor nuclear factor (NF)-kappaB controls the expression of numerous respiratory syncytial virus (RSV)-inducible inflammatory and immunomodulatory genes. Using a BALB/c mouse model, the present article shows that RSV potently and specifically activates NF-kappaB in vivo, a process that involves nuclear translocation of the subunits RelA, p50, and c-Rel in the lung. By depletion of alveolar macrophages (AMs) in BALB/c mice and use of C3H/HeJ mice lacking a functional Toll-like receptor (TLR)-4 signaling pathway, we demonstrate the existence of distinct but sequentially integrated RSV-inducible early NF-kappaB responses in the lung. The first response occurs early after RSV inoculation, is AM and TLR4 dependent, and is viral replication independent, whereas the second response involves epithelial cells and/or inflammatory cells, is TLR4 independent, and requires viral replication. NF-kappaB may be considered a central activator of not only inflammatory but also innate immune responses to RSV.


Journal of Virology | 2001

Expression of Respiratory Syncytial Virus-Induced Chemokine Gene Networks in Lower Airway Epithelial Cells Revealed by cDNA Microarrays

Yuhong Zhang; Bruce A. Luxon; Antonella Casola; Roberto P. Garofalo; Mohammad Jamaluddin; Allan R. Brasier

ABSTRACT The Paramyxovirus respiratory syncytial virus (RSV) is the primary etiologic agent of serious epidemic lower respiratory tract disease in infants, immunosuppressed patients, and the elderly. Lower tract infection with RSV is characterized by a pronounced peribronchial mononuclear infiltrate, with eosinophilic and basophilic degranulation. Because RSV replication is restricted to airway epithelial cells, where RSV replication induces potent expression of chemokines, the epithelium is postulated to be a primary initiator of pulmonary inflammation in RSV infection. The spectrum of RSV-induced chemokines expressed by alveolar epithelial cells has not been fully investigated. In this report, we profile the kinetics and patterns of chemokine expression in RSV-infected lower airway epithelial cells (A549 and SAE). In A549 cells, membrane-based cDNA macroarrays and high-density oligonucleotide probe-based microarrays identified inducible expression of CC (I-309, Exodus-1, TARC, RANTES, MCP-1, MDC, and MIP-1α and -1β), CXC (GRO-α, -β, and -γ, ENA-78, interleukin-8 [IL-8], and I-TAC), and CX3C (Fractalkine) chemokines. Chemokines not previously known to be expressed by RSV-infected cells were independently confirmed by multiprobe RNase protection assay, Northern blotting, and reverse transcription-PCR. High-density microarrays performed on SAE cells confirmed a similar pattern of RSV-inducible expression of CC chemokines (Exodus-1, RANTES, and MIP-1α and -1β), CXC chemokines (I-TAC, GRO-α, -β, and -γ, and IL-8), and Fractalkine. In contrast, TARC, MCP-1, and MDC were not induced, suggesting the existence of distinct genetic responses for different types of airway-derived epithelial cells. Hierarchical clustering by agglomerative nesting and principal-component analyses were performed on A549-expressed chemokines; these analyses indicated that RSV-inducible chemokines are ordered into three related expression groups. These data profile the temporal changes in expression by RSV-infected lower airway epithelial cells of chemokines, chemotactic proteins which may be responsible for the complex cellular infiltrate in virus-induced respiratory inflammation.


Journal of Virology | 2001

Inducible Expression of Inflammatory Chemokines in Respiratory Syncytial Virus-Infected Mice: Role of MIP-1α in Lung Pathology

Helene A. Haeberle; William A. Kuziel; Hans-Juergen Dieterich; Antonella Casola; Zoran Gatalica; Roberto P. Garofalo

ABSTRACT Lower respiratory tract disease caused by respiratory syncytial virus (RSV) is characterized by profound airway mucosa inflammation, both in infants with naturally acquired infection and in experimentally inoculated animal models. Chemokines are central regulatory molecules in inflammatory, immune, and infectious processes of the lung. In this study, we demonstrate that intranasal infection of BALB/c mice with RSV A results in inducible expression of lung chemokines belonging to the CXC (MIP-2 and IP-10), CC (RANTES, eotaxin, MIP-1β, MIP-1α, MCP-1, TCA-3) and C (lymphotactin) families. Chemokine mRNA expression occurred as early as 24 h following inoculation and persisted for at least 5 days in mice inoculated with the highest dose of virus (107 PFU). In general, levels of chemokine mRNA and protein were dependent on the dose of RSV inoculum and paralleled the intensity of lung cellular inflammation. Immunohisthochemical studies indicated that RSV-induced expression of MIP-1α, one of the most abundantly expressed chemokines, was primarily localized in epithelial cells of the alveoli and bronchioles, as well as in adjoining capillary endothelium. Genetically altered mice with a selective deletion of the MIP-1α gene (−/− mice) demonstrated a significant reduction in lung inflammation following RSV infection, compared to control littermates (+/+ mice). Despite the paucity of infiltrating cells, the peak RSV titer in the lung of −/− mice was not significantly different from that observed in +/+ mice. These results provide the first direct evidence that RSV infection may induce lung inflammation via the early production of inflammatory chemokines.


Journal of Biological Chemistry | 1998

A Promoter Recruitment Mechanism for Tumor Necrosis Factor-α-induced Interleukin-8 Transcription in Type II Pulmonary Epithelial Cells DEPENDENCE ON NUCLEAR ABUNDANCE OF Rel A, NF-κB1, AND c-Rel TRANSCRIPTION FACTORS

Allan R. Brasier; Mohammad Jamaluddin; Antonella Casola; Weili Duan; Qing Shen; Roberto P. Garofalo

The alveolar macrophage-derived peptide tumor necrosis factor-α (TNFα) initiates pulmonary inflammation through its ability to stimulate interleukin-8 (IL-8) synthesis in alveolar epithelial cells through an incompletely described transcriptional mechanism. In this study, we use the technique of ligation-mediated polymerase chain reaction (LMPCR) to record changes in transcription factor occupancy of the IL-8 promoter after TNFα stimulation of A549 human alveolar cells. Using dimethylsulfate/LMPCR, no detectable proteins bind the TATA box in unstimulated cells. By contrast, TNFα rapidly induces protection of G residues at −79 and −80 coincident with endogenous IL-8 gene transcription. Using DNase I/LMPCR, we observe inducible protection of nucleotides −60 to −99 (the TNF response element) and nucleotides −3 to −32 (containing the TATA box). Surprisingly, extensive TATA box protection is only seen after TNFα stimulation. Using a two-step microaffinity isolation/Western immunoblot DNA binding assay, we observe that the NF-κB subunits Rel A, NF-κB1, and c-Rel inducibly bind the TNF response element; these proteins undergo rapid TNFα-inducible increases in nuclear abundance as a consequence of IκBα proteolysis. Furthermore, the peptide aldehyde N-acetyl-Leu-Leu-norleucinal, an agent that blocks both IκBα proteolysis and NF-κB subunit translocation, abrogates recombinant human TNFα-inducible IL-8 gene transcription. These studies demonstrate that IL-8 is activated by a promoter recruitment mechanism in alveolar epithelial cells, where NF-κB subunit translocation is required for (and coincident with) binding of the constitutively active TATA box-binding proteins.


Journal of Virology | 2002

Identification of NF-κB-Dependent Gene Networks in Respiratory Syncytial Virus-Infected Cells

Bing Tian; Yuhong Zhang; Bruce A. Luxon; Roberto P. Garofalo; Antonella Casola; Mala Sinha; Allan R. Brasier

ABSTRACT Respiratory syncytial virus (RSV) is a mucosa-restricted virus that is a leading cause of epidemic respiratory tract infections in children. In epithelial cells, RSV replication activates nuclear translocation of the inducible transcription factor nuclear factor κB (NF-κB) through proteolysis of its cytoplasmic inhibitor, IκB. In spite of a putative role in mediating virus-inducible gene expression, the spectrum of NF-κB-dependent genes induced by RSV infection has not yet been determined. To address this, we developed a tightly regulated cell system expressing a nondegradable, epitope-tagged IκBα isoform (Flag-IκBα Mut) whose expression could be controlled by exogenous addition of nontoxic concentrations of doxycycline. Flag-IκBα Mut expression potently inhibited IκBα proteolysis, NF-κB binding, and NF-κB-dependent gene transcription in cells stimulated with the prototypical NF-κB-activating cytokine tumor necrosis factor alpha (TNF-α) and in response to RSV infection. High-density oligonucleotide microarrays were then used to profile constitutive and RSV-induced gene expression in the absence or presence of Flag-IκBα Mut. Comparison of these profiles revealed 380 genes whose expression was significantly changed by the dominant-negative NF-κB. Of these, 236 genes were constitutive (not RSV regulated), and surprisingly, only 144 genes were RSV regulated, representing numerically ∼10% of the total population of RSV-inducible genes at this time point. Hierarchical clustering of the 144 RSV- and Flag-IκBα Mut-regulated genes identified two discrete gene clusters. The first group had high constitutive expression, and its expression levels fell in response to RSV infection. In this group, constitutive mRNA expression was increased by Flag-IκBα Mut expression, and the RSV-induced decrease in expression was partly inhibited. In the second group, constitutive expression was very low (or undetectable) and, after RSV infection, expression levels strongly increased. In this group, NF-κB was required for RSV-inducible expression because Flag-IκBα Mut expression blocked their induction by RSV. This latter cluster includes chemokines, transcriptional regulators, intracellular proteins regulating translation and proteolysis, and secreted proteins (complement components and growth factor regulators). These data suggest that NF-κB action induces global cellular responses after viral infection.


Journal of Biological Chemistry | 2004

Reactive oxygen species mediate virus-induced STAT activation: role of tyrosine phosphatases.

Tianshuang Liu; Shawn M. Castro; Allan R. Brasier; Mohammad Jamaluddin; Roberto P. Garofalo; Antonella Casola

Respiratory syncytial virus (RSV) is the leading cause of epidemic respiratory tract illness in children in the United States and worldwide. RSV infection of airway epithelial cells induces formation of reactive oxygen species (ROS), whose production mediates the expression of cytokines and chemokines involved the immune/inflammatory responses of the lung. In this study, we have investigated the role of ROS in RSV-induced signal transducers and activators of transcription (STAT) activation and interferon regulatory factor (IRF) gene expression in human airway epithelial cells. Our results indicate that RSV replication induces IRF-1 and -7 gene transcription, a response abrogated by antioxidants. RSV infection induces binding of STAT to the IRF-1 γ-interferon-activated sequence (GAS) and IRF-7 interferon-stimulated responsive element (ISRE). STAT1 and STAT3 bind IRF-1 GAS, whereas STAT1, STAT2, IRF-1, and IRF-9 bind IRF-7 ISRE. Antioxidant treatment blocks RSV-induced STAT binding to both the IRF-1 GAS and IRF-7 ISRE by inhibition of inducible STAT1 and STAT3 tyrosine phosphorylation, suggesting that RSV-induced ROS formation is required for STAT activation and IRF gene expression. Although protein tyrosine phosphorylation is necessary for RSV-induced STAT activation, Janus kinase and Src kinase activation do not mediate this effect. Instead, RSV infection inhibits intracellular tyrosine phosphatase activity, which is restored by antioxidant treatment. Pharmacological inhibition of tyrosine phosphatases induces STAT activation. Together, these results suggest that modulation of phosphatases could be an important mechanism of virus-induced STAT activation. Treatment of alveolar epithelial cells with the NAD(P)H oxidase inhibitor diphenylene iodonium abolishes RSV-induced STAT activation, indicating that NAD(P)H oxidase-produced ROS are required for downstream activation of the transcription factors IRF and STAT in virus-infected airway epithelial cells.


Journal of Immunology | 2000

Requirement of a Novel Upstream Response Element in Respiratory Syncytial Virus-Induced IL-8 Gene Expression

Antonella Casola; Roberto P. Garofalo; Mohammad Jamaluddin; Spiros Vlahopoulos; Allan R. Brasier

Respiratory syncytial virus (RSV) produces intense pulmonary inflammation, in part, through its ability to induce chemokine synthesis in infected airway epithelial cells. In this study, we compare mechanisms for induction of the CXC chemokine IL-8, in human type II alveolar (A549) cells by RSV infection and by stimulation with the cytokine TNF. Promoter deletion and mutagenesis experiments indicate that although the region from −99 to −54 nt is sufficient for TNF-induced IL-8 transcription, this region alone is not sufficient for RSV-induced IL-8 transcription. Instead, RSV requires participation of a previously unrecognized element, spanning from −162 to −132 nt, that we term the RSV response element (RSVRE), and a previously characterized element at −132 to −99 nt, containing an AP-1 binding site. RSV infection of A549 cells induces increased RSVRE- and AP-1-binding activities and increased synthesis of IFN regulatory factor-1 protein, which is present in the RSVRE-binding complex. These data confirm that the IL-8 gene enhancers are controlled in a stimulus-specific fashion and participation of distinct promoter elements is required to activate gene transcription. These observations are important for rational design of inhibitors of RSV-induced lung inflammation.


Journal of Virology | 2001

Multiple cis regulatory elements control RANTES promoter activity in alveolar epithelial cells infected with respiratory syncytial virus.

Antonella Casola; Roberto P. Garofalo; Helene A. Haeberle; Todd Elliott; Rongtuan Lin; Mohammad Jamaluddin; Allan R. Brasier

ABSTRACT Respiratory syncytial virus (RSV) produces intense pulmonary inflammation, in part through its ability to induce chemokine synthesis in infected airway epithelial cells. RANTES (regulated upon activation, normally T-cell expressed and presumably secreted) is a CC chemokine which recruits and activates monocytes, lymphocytes, and eosinophils, all cell types present in the lung inflammatory infiltrate induced by RSV infection. In this study, we analyzed the mechanism of RSV-induced RANTES promoter activation in human type II alveolar epithelial cells (A549 cells). Promoter deletion and mutagenesis experiments indicate that RSV requires the presence of five different cisregulatory elements, located in the promoter fragment spanning from −220 to +55 nucleotides, corresponding to NF-κB, C/EBP, Jun/CREB/ATF, and interferon regulatory factor (IRF) binding sites. Although site mutations of the NF-κB, C/EBP, and CREB/AP-1 like sites reduce RSV-induced RANTES gene transcription to 50% or less, only mutations affecting IRF binding completely abolish RANTES inducibility. Supershift and microaffinity isolation assays were used to identify the different transcription factor family members whose DNA binding activity was RSV inducible. Expression of dominant negative mutants of these transcription factors further established their central role in virus-induced RANTES promoter activation. Our finding that the presence of multiple cis regulatory elements is required for full activation of the RANTES promoter in RSV-infected alveolar epithelial cells supports the enhanceosome model for RANTES gene transcription, which is absolutely dependent on binding of IRF transcription factors. The identification of regulatory mechanisms of RANTES gene expression is fundamental for rational design of inhibitors of RSV-induced lung inflammation.


Journal of Virology | 2005

Activity and Regulation of Alpha Interferon in Respiratory Syncytial Virus and Human Metapneumovirus Experimental Infections

Antonieta Guerrero-Plata; Samuel Baron; Joyce Poast; Patrick A. Adegboyega; Antonella Casola; Roberto P. Garofalo

ABSTRACT Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause a similar spectrum of respiratory infections in humans. Classified within the Paramyxoviridae family, Pneumovirinae subfamily, RSV and hMPV present a significant degree of divergence in genome constellation, organization, and protein sequences. RSV has been reported to be a poor inducer of alpha/beta interferons (IFN-α/β) and partially resistant to its antiviral activity. The nature of the innate immune response to hMPV is currently unknown. Herein, an experimental mouse model was used to investigate the interplay between RSV and hMPV infections and IFN-α in the airways. RSV-infected BALB/c mice treated intranasally with either poly-ICLC, a potent inducer of IFN-α, or directly with recombinant IFN-α showed significantly reduced lung viral titers, inflammation, and clinical disease than untreated controls. However, RSV was significantly less sensitive to the antiviral activity of IFN-α than hMPV. Similarly, when the ability to directly induce IFN-α production was assessed, RSV was clearly a weaker inducer of IFN-α than hMPV, as shown by both kinetics and the absolute amount of IFN-α secreted into the bronchoalveolar lavage. To further investigate the putative inhibitory effect of these viruses on IFN-α production, mice were infected for 48 h prior to treatment with poly-ICLC or a specific Toll-like receptor 9 ligand, CpG oligodeoxynucleotides. Strikingly, both poly-ICLC- and CpG-mediated IFN-α production was abrogated by either RSV or MPV infection. These results suggest that a complex interplay between virus-specific and host-mediated responses regulates IFN-α in the lung during infection by members of the Pneumovirinae family.

Collaboration


Dive into the Antonella Casola's collaboration.

Top Co-Authors

Avatar

Roberto P. Garofalo

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Allan R. Brasier

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Deepthi Kolli

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Tianshuang Liu

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Xiaoyong Bao

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Teodora Ivanciuc

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Mohammad Jamaluddin

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Narayana Komaravelli

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junping Ren

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge