Antonella Di Campli
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonella Di Campli.
Nature Cell Biology | 2004
Anna Godi; Antonella Di Campli; Athanasios Konstantakopoulos; Giuseppe Di Tullio; Dario R. Alessi; Gursant Kular; Tiziana Daniele; Pierfrancesco Marra; John M. Lucocq; M. Antonietta De Matteis
The molecular mechanisms underlying the formation of carriers trafficking from the Golgi complex to the cell surface are still ill-defined; nevertheless, the involvement of a lipid-based machinery is well established. This includes phosphatidylinositol 4-phosphate (PtdIns(4)P), the precursor for phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). In yeast, PtdIns(4)P exerts a direct role, however, its mechanism of action and its targets in mammalian cells remain uncharacterized. We have identified two effectors of PtdIns(4)P, the four-phosphate-adaptor protein 1 and 2 (FAPP1 and FAPP2). Both proteins localize to the trans-Golgi network (TGN) on nascent carriers, and interact with PtdIns(4)P and the small GTPase ADP-ribosylation factor (ARF) through their plekstrin homology (PH) domain. Displacement or knockdown of FAPPs inhibits cargo transfer to the plasma membrane. Moreover, overexpression of FAPP-PH impairs carrier fission. Therefore, FAPPs are essential components of a PtdIns(4)P- and ARF-regulated machinery that controls generation of constitutive post-Golgi carriers.
Nature | 2007
Giovanni D’Angelo; Elena V. Polishchuk; Giuseppe Di Tullio; Michele Santoro; Antonella Di Campli; Anna Godi; Gun West; Jacek Bielawski; Chia-Chen Chuang; Aarnoud C. van der Spoel; Frances M. Platt; Yusuf A. Hannun; Roman S. Polishchuk; Peter Mattjus; Maria Antonietta De Matteis
The molecular machinery responsible for the generation of transport carriers moving from the Golgi complex to the plasma membrane relies on a tight interplay between proteins and lipids. Among the lipid-binding proteins of this machinery, we previously identified the four-phosphate adaptor protein FAPP2, the pleckstrin homology domain of which binds phosphatidylinositol 4-phosphate and the small GTPase ARF1. FAPP2 also possesses a glycolipid-transfer-protein homology domain. Here we show that human FAPP2 is a glucosylceramide-transfer protein that has a pivotal role in the synthesis of complex glycosphingolipids, key structural and signalling components of the plasma membrane. The requirement for FAPP2 makes the whole glycosphingolipid synthetic pathway sensitive to regulation by phosphatidylinositol 4-phosphate and ARF1. Thus, by coupling the synthesis of glycosphingolipids with their export to the cell surface, FAPP2 emerges as crucial in determining the lipid identity and composition of the plasma membrane.
The EMBO Journal | 2008
Mariella Vicinanza; Giovanni D'Angelo; Antonella Di Campli; Maria Antonietta De Matteis
The phosphoinositides (PIs) function as efficient and finely tuned switches that control the assembly–disassembly cycles of complex molecular machineries with key roles in membrane trafficking. This important role of the PIs is mainly due to their versatile nature, which is in turn determined by their fast metabolic interconversions. PIs can be tightly regulated both spatially and temporally through the many PI kinases (PIKs) and phosphatases that are distributed throughout the different intracellular compartments. In spite of the enormous progress made in the past 20 years towards the definition of the molecular details of PI–protein interactions and of the regulatory mechanisms of the individual PIKs and phosphatases, important issues concerning the general principles of the organisation of the PI system and the coordination of the different PI‐metabolising enzymes remain to be addressed. The answers should come from applying a systems biology approach to the study of the PI system, through the integration of analyses of the protein interaction data of the PI enzymes and the PI targets with those of the ‘phenomes’ of the genetic diseases that involve these PI‐metabolising enzymes.
The EMBO Journal | 2011
Mariella Vicinanza; Antonella Di Campli; Elena V. Polishchuk; Michele Santoro; Giuseppe Di Tullio; Anna Godi; Elena Levtchenko; Maria Giovanna De Leo; Roman S. Polishchuk; Lisette Sandoval; Maria-Paz Marzolo; Maria Antonietta De Matteis
Mutations in the phosphatidylinositol 4,5‐bisphosphate (PtdIns4,5P2) 5‐phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5‐phosphatase activity, OCRL controls early endosome (EE) function. OCRL depletion impairs the recycling of multiple classes of receptors, including megalin (which mediates protein reabsorption in the kidney) that are retained in engorged EEs. These trafficking defects are caused by ectopic accumulation of PtdIns4,5P2 in EEs, which in turn induces an N‐WASP‐dependent increase in endosomal F‐actin. Our data provide a molecular explanation for renal proximal tubular dysfunction in Lowe syndrome and highlight that tight control of PtdIns4,5P2 and F‐actin at the EEs is essential for exporting cargoes that transit this compartment.
Cytoskeleton | 1999
Antonella Di Campli; Ferran Valderrama; Teresa Babi; Maria Antonietta De Matteis; Alberto Luini; Gustavo Egea
In this report we have studied the morphological changes of the Golgi complex (GC) that specifically accompany F-actin reorganizations. In starved rat RBL-2H3 tumor mast cells, the GC, that was visualized at immunofluorescence level with antibodies raised against the Golgi-resident proteins giantin, mannosidase II, or TGN-38, showed a compacted morphology with a supranuclear positioning. Concomitant to membrane ruffle formation induced by epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA), and stress fiber formation induced by lysophosphatidic acid (LPA), specific GC morphological changes were observed. When cells were stimulated with EGF or PMA, the compacted GC morphology was transformed into a reticular network that was extended towards the cell periphery. When cells were incubated with LPA, the GC acquired a characteristic ring-shaped morphology. Brefeldin A (BFA) did not affect the PMA- or LPA-induced membrane ruffling and stress fiber formation, respectively, indicating that actin rearrangements occurred independent of the presence of the GC. Upon BFA removal, the presence of PMA or LPA during the recovery process induced the GC to acquire the morphological appearance described above for each agent. Moreover, the PMA- but not the LPA-induced GC rearrangements were sensitive to the actin perturbing agents cytochalasin D and jasplakinolide. When cells were preincubated with the phosphatidylinositide 3-kinase (PI3K) inhibitors wortmannin or LY294002, the PMA-induced GC morphological changes were inhibited but not membrane ruffles. Finally, the PMA-induced increase in the post-Golgi transport of glycosaminoglycans to the cell surface was not altered by cytochalasin D or jasplakinolide. Altogether, these data suggest that: (1) the shape of the GC is influenced by the 3D arrangement of actin microfilaments; (2) PI3K regulates the association of the GC with actin microfilaments; and (3) actin microfilaments are not essential for the post-Golgi transport to the plasma membrane.
Developmental Cell | 2014
Jorge Cancino; Anita Capalbo; Antonella Di Campli; Monica Giannotta; Riccardo Rizzo; Juan E. Jung; Rosaria Di Martino; Maria Persico; Petra Heinklein; Michele Sallese; Alberto Luini
A fundamental property of cellular processes is to maintain homeostasis despite varying internal and external conditions. Within the membrane transport apparatus, variations in membrane fluxes from the endoplasmic reticulum (ER) to the Golgi complex are balanced by opposite fluxes from the Golgi to the ER to maintain homeostasis between the two organelles. Here we describe a molecular device that balances transport fluxes by integrating transduction cascades with the transport machinery. Specifically, ER-to-Golgi transport activates the KDEL receptor at the Golgi, which triggers a cascade that involves Gs and adenylyl cyclase and phosphodiesterase isoforms and then PKA activation and results in the phosphorylation of transport machinery proteins. This induces retrograde traffic to the ER and balances transport fluxes between the ER and Golgi. Moreover, the KDEL receptor activates CREB1 and other transcription factors that upregulate transport-related genes. Thus, a Golgi-based control system maintains transport homeostasis through both signaling and transcriptional networks.
Nature Cell Biology | 2016
Maria Giovanna De Leo; Leopoldo Staiano; Mariella Vicinanza; Alessandro Luciani; Annamaria Carissimo; Margherita Mutarelli; Antonella Di Campli; Elena V. Polishchuk; Giuseppe Di Tullio; Valentina Morra; Elena Levtchenko; Francesca Oltrabella; Tobias Starborg; Michele Santoro; Diego di Bernardo; Olivier Devuyst; Martin Lowe; Diego L. Medina; Andrea Ballabio; Maria Antonietta De Matteis
Phosphoinositides (PtdIns) control fundamental cell processes, and inherited defects of PtdIns kinases or phosphatases cause severe human diseases, including Lowe syndrome due to mutations in OCRL, which encodes a PtdIns(4,5)P2 5-phosphatase. Here we unveil a lysosomal response to the arrival of autophagosomal cargo in which OCRL plays a key part. We identify mitochondrial DNA and TLR9 as the cargo and the receptor that triggers and mediates, respectively, this response. This lysosome-cargo response is required to sustain the autophagic flux and involves a local increase in PtdIns(4,5)P2 that is confined in space and time by OCRL. Depleting or inhibiting OCRL leads to an accumulation of lysosomal PtdIns(4,5)P2, an inhibitor of the calcium channel mucolipin-1 that controls autophagosome–lysosome fusion. Hence, autophagosomes accumulate in OCRL-depleted cells and in the kidneys of Lowe syndrome patients. Importantly, boosting the activity of mucolipin-1 with selective agonists restores the autophagic flux in cells from Lowe syndrome patients.
Oncotarget | 2016
Daniela Gaglio; Silvia Valtorta; Marilena Ripamonti; Marcella Bonanomi; Chiara Damiani; Sergio Todde; Alfredo Simone Negri; Francesca Sanvito; Fabrizia Mastroianni; Antonella Di Campli; Gabriele Turacchio; Giuseppe Di Grigoli; Sara Belloli; Alberto Luini; Maria Carla Gilardi; Anna Maria Colangelo; Lilia Alberghina; Rosa Maria Moresco
Oncogenic K-ras is capable to control tumor growth and progression by rewiring cancer metabolism. In vitro NIH-Ras cells convert glucose to lactate and use glutamine to sustain anabolic processes, but their in vivo environmental adaptation and multiple metabolic pathways activation ability is poorly understood. Here, we show that NIH-Ras cancer cells and tumors are able to coordinate nutrient utilization to support aggressive cell proliferation and survival. Using PET imaging and metabolomics-mass spectrometry, we identified the activation of multiple metabolic pathways such as: glycolysis, autophagy recycling mechanism, glutamine and serine/glycine metabolism, both under physiological and under stress conditions. Finally, differential responses between in vitro and in vivo systems emphasize the advantageous and uncontrolled nature of the in vivo environment, which has a pivotal role in controlling the responses to therapy.
Biochimica et Biophysica Acta | 2018
Vanessa Capone; Emanuela Clemente; Elena Restelli; Antonella Di Campli; Samantha Sperduti; Francesca Ornaghi; Laura Pietrangelo; Feliciano Protasi; Roberto Chiesa; Michele Sallese
Loss-of-function mutations in the SIL1 gene are linked to Marinesco-Sjögren syndrome (MSS), a rare multisystem disease of infancy characterized by cerebellar and skeletal muscle degeneration. SIL1 is a ubiquitous adenine nucleotide exchange factor for the endoplasmic reticulum (ER) chaperone BiP. The complexity of mechanisms by which loss of SIL1 causes MSS is not yet fully understood. We used HeLa cells to test the hypothesis that impaired protein folding in the ER due to loss of SIL1 could affect secretory trafficking, impairing the transport of cargoes essential for the function of MSS vulnerable cells. Immunofluorescence and ultrastructural analysis of SIL1-knocked-down cells detected ER chaperone aggregation, enlargement of the Golgi complex, increased autophagic vacuoles, and mitochondrial swelling. SIL1-interefered cells also had delayed ER-to-plasma membrane transport with retention of Na+/K+-ATPase and procollagen-I in the ER and Golgi, and increased apoptosis. The PERK pathway of the unfolded protein response was activated in SIL1-interfered cells, and the PERK inhibitor GSK2606414 attenuated the morphological and functional alterations of the secretory pathway, and significantly reduced cell death. These results indicate that loss of SIL1 is associated with alterations of secretory transport, and suggest that inhibiting PERK signalling may alleviate the cellular pathology of SIL1-related MSS.
Oncotarget | 2017
Carmen Ruggiero; Mauro Grossi; Giorgia Fragassi; Antonella Di Campli; Carmine Di Ilio; Alberto Luini; Michele Sallese
Membrane trafficking via the Golgi-localised KDEL receptor activates signalling cascades that coordinate both trafficking and other cellular functions, including autophagy and extracellular matrix degradation. In this study, we provide evidence that membrane trafficking activates KDEL receptor and the Src family kinases at focal adhesions of HeLa cells, where this phosphorylates ADP-ribosylation factor GTPase-activating protein with SH3 domain, ankyrin repeat and PH domain (ASAP)1 and focal adhesion kinase (FAK). Previous studies have reported extracellular matrix degradation at focal adhesions. Here, matrix degradation was not seen at focal adhesions, although it occurred at invadopodia, where it was increased by KDEL receptor activation. This activation of KDEL receptor at invadopodia of A375 cells promoted recruitment and phosphorylation of FAK on tyrosines 397 and 861. From the functional standpoint, FAK overexpression inhibited steady-state and KDEL-receptor-stimulated extracellular matrix degradation, whereas overexpression of the FAK-Y397F mutant only inhibited KDEL-receptor-stimulated matrix degradation. Finally, we show that the Src and FAK activated downstream of KDEL receptor are part of parallel signalling pathways. In conclusion, membrane-traffic-generated signalling via KDEL receptor activates Src not only at the Golgi complex, but also at focal adhesions. By acting on Src and FAK, KDEL receptor increases invadopodia-mediated matrix degradation.