Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonella Fogliata is active.

Publication


Featured researches published by Antonella Fogliata.


Radiotherapy and Oncology | 2008

A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy

Luca Cozzi; Ketayun A. Dinshaw; Shyam Kishore Shrivastava; Umesh Mahantshetty; D. Deshpande; Swamidas V. Jamema; Eugenio Vanetti; Alessandro Clivio; Giorgia Nicolini; Antonella Fogliata

PURPOSE A treatment planning study was performed to evaluate the performance of the novel volumetric modulated single arc radiotherapy on cervix uteri cancer patients. Conventional fixed field IMRT was used as benchmark. METHODS AND MATERIALS CT datasets of eight patients were included in the study. Plans were optimised with the aim to assess organs at risk and healthy tissue sparing while enforcing highly conformal target coverage. Planning objectives for PTV were: maximum significant dose lower than 52.5 Gy and minimum significant dose higher than 47.5 Gy. For organs at risk, the median and maximum doses were constrained to be lower than 30 (rectum), 35 (bladder) and 25 Gy (small bowel) and 47.5 Gy; additional objectives were set on various volume thresholds. Plans were evaluated on parameters derived from dose volume histograms and on NTCP estimates. Peripheral doses at 5, 10 and 15 cm from the PTV surface were recorded to assess the low-level dose bath. The MU and delivery time were scored to measure expected treatment efficiency. RESULTS Both RapidArc and IMRT resulted in equivalent target coverage but RapidArc had an improved homogeneity (D(5%)-D(95%) = 3.5 +/- 0.6 Gy for RapidArc and 4.3 +/- 0.8 Gy for IMRT) and conformity index (CI(90%) = 1.30 +/- 0.06 for RapidArc and 1.41 +/- 0.15 for IMRT). On rectum the mean dose was reduced by about 6 Gy (10 Gy for the rectum fraction not included in the PTV). Similar trends were observed for the various dose levels with reductions ranging from approximately 3 to 14.4 Gy. For the bladder, RapidArc allowed a reduction of mean dose ranging from approximately 4 to 6Gy and a reduction from approximately 3 to 9 Gy w.r.t. IMRT. Similar trends but with smaller absolute differences were observed for the small bowel and left and right femur. NTCP calculations on bladder and rectum confirmed the DVH data with a potential relative reduction ranging from 30 to 70% from IMRT to RapidArc. The healthy tissue was significantly less irradiated in the medium to high dose regions (from 20 to 30 Gy) and the integral dose reduction with RapidArc was about 12% compared to IMRT. Concerning peripheral dose, the relative difference between IMRT and RapidArc was of 9 +/- 2%, 43 +/- 11% and 36 +/- 5% at 5, 10 and 15 cm from the PTV surface, respectively. The MU/Gy from RapidArc was 245 +/- 17 corresponding to an expected average beam on time of 73 +/- 10 s per fractions of 2 Gy. IMRT plans presented higher values with an average of MU/Gy = 479 +/- 63. CONCLUSION RapidArc was investigated for cervix uteri cancer showing significant improvements in organs at risk and healthy tissue sparing with uncompromised target coverage leading to better conformal avoidance of treatments w.r.t. conventional IMRT. This, in combination with the confirmed short delivery time, can lead to clinically significant advances in the management of this highly aggressive cancer type. Clinical protocols are now advised to evaluate prospectively the potential benefit observed at the planning level.


Radiotherapy and Oncology | 2009

Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypo-pharynx and larynx: A treatment planning comparison with fixed field IMRT

Eugenio Vanetti; Alessandro Clivio; Giorgia Nicolini; Antonella Fogliata; Sarbani Ghosh-Laskar; Jai Prakash Agarwal; Ritu Raj Upreti; Ashwini Budrukkar; Vedang Murthy; D. Deshpande; Shyam Kishore Shrivastava; Ketayun A. Dinshaw; Luca Cozzi

PURPOSE A planning study was performed to evaluate the performance of volumetric modulated arc radiotherapy on head and neck cancer patients. Conventional fixed field IMRT was used as a benchmark. METHODS AND MATERIALS CT datasets of 29 patients with squamous cell carcinoma of the oro-pharynx, hypo-pharynx and larynx were included. Plans for fixed beam IMRT, single (RA1) and double (RA2) modulated arcs with the RapidArc technique were optimised. Dose prescription was set to 66 Gy to the primary tumour (at 2.2 Gy/fraction), 60 Gy to intermediate-risk nodes and 54 Gy to low-risk nodal levels. The planning objectives for PTV were minimum dose >95%, and maximum dose <107%. Maximum dose to spinal cord was limited to 46 Gy, maximum to brain stem to 50 Gy. For parotids, mean dose <26 Gy (or median <30 Gy) was assumed as the objective. The MU and delivery time were scored to measure expected treatment efficiency. RESULTS Target coverage and homogeneity results improved with RA2 plans compared to both RA1 and IMRT. All the techniques fulfilled the objectives on maximum dose, while small deviations were observed on minimum dose for PTV. The conformity index (CI(95%)) was 1.7+/-0.2 for all the three techniques. RA2 allowed a reduction of D(2%) to spinal cord of approximately 3 Gy compared to IMRT (RA1 D(2%) increased it of approximately 1 Gy). On brain stem, D(2%) was reduced from 12 Gy (RA1 vs. IMRT) to 13.5 Gy (RA2 vs. IMRT). The mean dose to ipsi-lateral parotids was reduced from 40 Gy (IMRT) to 36.2 Gy (RA1) and 34.4 Gy (RA2). The mean dose to the contra-lateral gland ranged from 32.6 Gy (IMRT) to 30.9 Gy (RA1) and 28.2 Gy (RA2). CONCLUSION RapidArc was investigated for head and neck cancer. RA1 and RA2 showed some improvements in organs at risk and healthy tissue sparing, while only RA2 offered improved target coverage with respect to conventional IMRT.


Physics in Medicine and Biology | 2006

Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations.

Tommy Knöös; Elinore Wieslander; Luca Cozzi; Carsten Brink; Antonella Fogliata; Dirk Albers; Håkan Nyström; Søren Lassen

A study of the performance of five commercial radiotherapy treatment planning systems (TPSs) for common treatment sites regarding their ability to model heterogeneities and scattered photons has been performed. The comparison was based on CT information for prostate, head and neck, breast and lung cancer cases. The TPSs were installed locally at different institutions and commissioned for clinical use based on local procedures. For the evaluation, beam qualities as identical as possible were used: low energy (6 MV) and high energy (15 or 18 MV) x-rays. All relevant anatomical structures were outlined and simple treatment plans were set up. Images, structures and plans were exported, anonymized and distributed to the participating institutions using the DICOM protocol. The plans were then re-calculated locally and exported back for evaluation. The TPSs cover dose calculation techniques from correction-based equivalent path length algorithms to model-based algorithms. These were divided into two groups based on how changes in electron transport are accounted for ((a) not considered and (b) considered). Increasing the complexity from the relatively homogeneous pelvic region to the very inhomogeneous lung region resulted in less accurate dose distributions. Improvements in the calculated dose have been shown when models consider volume scatter and changes in electron transport, especially when the extension of the irradiated volume was limited and when low densities were present in or adjacent to the fields. A Monte Carlo calculated algorithm input data set and a benchmark set for a virtual linear accelerator have been produced which have facilitated the analysis and interpretation of the results. The more sophisticated models in the type b group exhibit changes in both absorbed dose and its distribution which are congruent with the simulations performed by Monte Carlo-based virtual accelerator.


Physics in Medicine and Biology | 2007

On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations

Antonella Fogliata; Eugenio Vanetti; Dirk Albers; Carsten Brink; Alessandro Clivio; Tommy Knöös; Giorgia Nicolini; Luca Cozzi

A comparative study was performed to reveal differences and relative figures of merit of seven different calculation algorithms for photon beams when applied to inhomogeneous media. The following algorithms were investigated: Varian Eclipse: the anisotropic analytical algorithm, and the pencil beam with modified Batho correction; Nucletron Helax-TMS: the collapsed cone and the pencil beam with equivalent path length correction; CMS XiO: the multigrid superposition and the fast Fourier transform convolution; Philips Pinnacle: the collapsed cone. Monte Carlo simulations (MC) performed with the EGSnrc codes BEAMnrc and DOSxyznrc from NRCC in Ottawa were used as a benchmark. The study was carried out in simple geometrical water phantoms (rho = 1.00 g cm(-3)) with inserts of different densities simulating light lung tissue (rho = 0.035 g cm(-3)), normal lung (rho = 0.20 g cm(-3)) and cortical bone tissue (rho = 1.80 g cm(-3)). Experiments were performed for low- and high-energy photon beams (6 and 15 MV) and for square (13 x 13 cm2) and elongated rectangular (2.8 x 13 cm2) fields. Analysis was carried out on the basis of depth dose curves and transverse profiles at several depths. Assuming the MC data as reference, gamma index analysis was carried out distinguishing between regions inside the non-water inserts or inside the uniform water. For this study, a distance to agreement was set to 3 mm while the dose difference varied from 2% to 10%. In general all algorithms based on pencil-beam convolutions showed a systematic deficiency in managing the presence of heterogeneous media. In contrast, complicated patterns were observed for the advanced algorithms with significant discrepancies observed between algorithms in the lighter materials (rho = 0.035 g cm(-3)), enhanced for the most energetic beam. For denser, and more clinical, densities a better agreement among the sophisticated algorithms with respect to MC was observed.


Radiotherapy and Oncology | 2009

Volumetric-modulated arc radiotherapy for carcinomas of the anal canal: A treatment planning comparison with fixed field IMRT

Alessandro Clivio; Antonella Fogliata; Alessandra Franzetti-Pellanda; Giorgia Nicolini; Eugenio Vanetti; Rolf Wyttenbach; Luca Cozzi

PURPOSE A treatment planning study was performed to compare volumetric-modulated arc radiotherapy against conventional fixed field IMRT. MATERIALS AND METHODS CT datasets of 10 patients affected by carcinoma of the anal canal were included and five plans were generated for each case: fixed beam IMRT, single (RA1)- and double (RA2)-modulated arcs with the RapidArc technique. Dose prescription was set according to a simultaneous integrated boost strategy to 59.4 Gy to the primary tumour PTVI (at 1.8 Gy/fraction) and to 49.5 Gy to risk area including inguinal nodes, PTVII. Planning objectives for PTV were minimum dose >95%, maximum dose<107%; for organs at risk (OARs): bladder (mean<45 Gy, D(2%)<56 Gy, D(30%)<35 Gy), femurs (D(2%)<47 Gy), small bowel (mean<30 Gy, D(2%)<56 Gy). MU and delivery time scored treatment efficiency. RESULTS All techniques fulfilled objectives on maximum dose. Some deviations were observed on minimum dose for PTV. Uniformity (D(5)-D(95)) on PTVI resulted 6.6+/-1.4% for IMRT and ranged from 5.7+/-0.3% to 8.1+/-0.8% for RA plans (+/-1 standard deviation). Conformity index (CI(95%)) was 1.3+/-0.1 (IMRT) and 1.4+/-0.1 (all RA techniques). Bladder: all techniques resulted equivalent above 40 Gy; V(30 Gy) approximately 57% for the double arcs, approximately 61% for RA1 and approximately 65% for IMRT. Femurs: maximum dose was of the order of 41-42 Gy for all RA plans and approximately 45 Gy for IMRT. Small bowel: all techniques respected planning objectives. The number of computed MU/fraction was 1531+/-206 (IMRT), 468+/-95 (RA1), and 545+/-80 (RA2) leading to differences in treatment time: 9.4+/-1.7 min for IMRT vs. 1.1+/-0.0 min for RA1 and 2.6+/-0.0 min for double arcs. CONCLUSION RapidArc showed improvements in organs at risk and healthy tissue sparing with uncompromised target coverage when double arcs are applied. Optimal results were also achieved anyway with IMRT plans.


Radiotherapy and Oncology | 2001

A treatment planning comparison of 3D conformal therapy, intensity modulated photon therapy and proton therapy for treatment of advanced head and neck tumours

Luca Cozzi; Antonella Fogliata; Antony Lomax; Alessandra Bolsi

BACKGROUND AND PURPOSE In this work, the potential benefits and limitations of different treatment techniques, based on mixed photon-electron beams, 3D conformal therapy, intensity modulated photons (IM) and protons (passively scattered and spot scanned), have been assessed using comparative treatment planning methods in a cohort of patients presenting with advanced head and neck tumours. MATERIAL AND METHODS Plans for five patients were computed for all modalities using CT scans to delineate target volume (PTV) and organs at risk (OAR) and to predict dose distributions. The prescribed dose to the PTV was 54 Gy, whilst the spinal cord was constrained to a maximum dose of 40.5 Gy for all techniques. Dose volume histograms were used for physical and biological evaluation, which included equivalent uniform dose (EUD) calculations. RESULTS Excluding the mixed photon-electron technique, PTV coverage was within the defined limits for all techniques, with protons providing significantly improved dose homogeneity, resulting in correspondingly higher EUD results. For the spinal cord, protons also provided the best sparing with maximum doses as low as 17 Gy. Whilst the IM plans were demonstrated to be significantly superior to non-modulated photon plans, they were found to be inferior to protons for both criteria. A similar result was found for the parotid glands. Although they are partially included in the treated volume there is a clear indication that protons, and to a lesser extent IM photons, could play an important role in preserving organ functionality with a consequent improvement of the patients quality of life. CONCLUSIONS For advanced head and neck tumours, we have demonstrated that the use of IM photons or protons both have the potential to reduce the possibility of spinal cord toxicity. In addition, a substantial reduction of dose to the parotid glands through the use of protons enhances the interest for such a treatment modality in cases of advanced head and neck tumours. However, in terms of target coverage, the use of 3D conformal therapy, although somewhat inferior in quality to protons or IM photons, has been shown to be a reasonable alternative to the more advanced techniques. In contrast, the conventional technique of mixed photon and electron fields has been shown to be inferior to all other techniques for both target coverage and OAR involvement.


International Journal of Radiation Oncology Biology Physics | 2013

Is Stereotactic Body Radiation Therapy an Attractive Option for Unresectable Liver Metastases? A Preliminary Report From a Phase 2 Trial

M. Scorsetti; Stefano Arcangeli; A. Tozzi; T. Comito; Filippo Alongi; P. Navarria; P. Mancosu; G. Reggiori; Antonella Fogliata; Guido Torzilli; S. Tomatis; Luca Cozzi

PURPOSE To evaluate the feasibility of high-dose stereotactic body radiation therapy (SBRT) in the treatment of unresectable liver metastases. METHODS AND MATERIALS Patients with 1 to 3 liver metastases, with maximum individual tumor diameters less than 6 cm and a Karnofsky Performance Status of at least 70, were enrolled and treated by SBRT on a phase 2 clinical trial. Dose prescription was 75 Gy on 3 consecutive days. SBRT was delivered using the volumetric modulated arc therapy by RapidArc (Varian, Palo Alto, CA) technique. The primary end-point was in-field local control. Secondary end-points were toxicity and survival. RESULTS Between February 2010 and September 2011, a total of 61 patients with 76 lesions were treated. Among the patients, 21 (34.3%) had stable extrahepatic disease at study entry. The most frequent primary sites were colorectal (45.9%) and breast (18%). Of the patients, 78.7% had 1 lesion, 18.0% had 2 lesions, and 3.3% had 3 lesions. After a median of 12 months (range, 2-26 months), the in-field local response rate was 94%. The median overall survival rate was 19 months, and actuarial survival at 12 months was 83.5%. None of the patients experienced grade 3 or higher acute toxicity. No radiation-induced liver disease was detected. One patient experienced G3 late toxicity at 6 months, resulting from chest wall pain. CONCLUSIONS SBRT for unresectable liver metastases can be considered an effective, safe, and noninvasive therapeutic option, with excellent rates of local control and a low treatment-related toxicity.


Radiation Oncology | 2011

Feasibility and early clinical assessment of flattening filter free (FFF) based stereotactic body radiotherapy (SBRT) treatments

M. Scorsetti; Filippo Alongi; Simona Castiglioni; Alessandro Clivio; Antonella Fogliata; F. Lobefalo; P. Mancosu; P. Navarria; V. Palumbo; Chiara Pellegrini; Sara Pentimalli; G. Reggiori; Anna Maria Ascolese; Antonella Roggio; Stefano Arcangeli; A. Tozzi; Eugenio Vanetti; Luca Cozzi

PurposeTo test feasibility and safety of clinical usage of Flattening Filter Free (FFF) beams for delivering ablative stereotactic body radiation therapy (SBRT) doses to various tumor sites, by means of Varian TrueBeam™ (Varian Medical Systems).Methods and MaterialsSeventy patients were treated with SBRT and FFF: 51 lesions were in the thorax (48 patients),10 in the liver, 9 in isolated abdominal lymph node, adrenal gland or pancreas. Doses ranged from 32 to 75 Gy, depending on the anatomical site and the volume of the lesion to irradiate. Lung lesions were treated with cumulative doses of 32 or 48 Gy, delivered in 4 consecutive fractions. The liver patients were treated in 3 fractions with total dose of 75 Gy. The isolated lymph nodes were irradiated in 6 fractions with doses of 45 Gy. The inclusion criteria were the presence of isolated node, or few lymph nodes in the same lymph node region, in absence of other active sites of cancer disease before the SBRT treatment.ResultsAll 70 patients completed the treatment. The minimum follow-up was 3 months. Six cases of acute toxicities were recorded (2 Grade2 and 2 Grade3 in lung and 2 Grade2 in abdomen). No patient experienced acute toxicity greater than Grade3. No other types or grades of toxicities were observed at clinical evaluation visits.ConclusionsThis study showed that, with respect to acute toxicity, SBRT with FFF beams showed to be a feasible technique in 70 consecutive patients with various primary and metastatic lesions in the body.


Physics in Medicine and Biology | 2006

Dosimetric validation of the anisotropic analytical algorithm for photon dose calculation: fundamental characterization in water

Antonella Fogliata; Giorgia Nicolini; Eugenio Vanetti; Alessandro Clivio; Luca Cozzi

In July 2005 a new algorithm was released by Varian Medical Systems for the Eclipse planning system and installed in our institute. It is the anisotropic analytical algorithm (AAA) for photon dose calculations, a convolution/superposition model for the first time implemented in a Varian planning system. It was therefore necessary to perform validation studies at different levels with a wide investigation approach. To validate the basic performances of the AAA, a detailed analysis of data computed by the AAA configuration algorithm was carried out and data were compared against measurements. To better appraise the performance of AAA and the capability of its configuration to tailor machine-specific characteristics, data obtained from the pencil beam convolution (PBC) algorithm implemented in Eclipse were also added in the comparison. Since the purpose of the paper is to address the basic performances of the AAA and of its configuration procedures, only data relative to measurements in water will be reported. Validation was carried out for three beams: 6 MV and 15 MV from a Clinac 2100C/D and 6 MV from a Clinac 6EX. Generally AAA calculations reproduced very well measured data, and small deviations were observed, on average, for all the quantities investigated for open and wedged fields. In particular, percentage depth-dose curves showed on average differences between calculation and measurement smaller than 1% or 1 mm, and computed profiles in the flattened region matched measurements with deviations smaller than 1% for all beams, field sizes, depths and wedges. Percentage differences in output factors were observed as small as 1% on average (with a range smaller than +/-2%) for all conditions. Additional tests were carried out for enhanced dynamic wedges with results comparable to previous results. The basic dosimetric validation of the AAA was therefore considered satisfactory.


Radiation Oncology | 2008

The GLAaS algorithm for portal dosimetry and quality assurance of RapidArc, an intensity modulated rotational therapy

Giorgia Nicolini; Eugenio Vanetti; Alessandro Clivio; Antonella Fogliata; Stine Korreman; Jiri Bocanek; Luca Cozzi

BackgroundTo expand and test the dosimetric procedure, known as GLAaS, for amorphous silicon detectors to the RapidArc intensity modulated arc delivery with Varian infrastructures and to test the RapidArc dosimetric reliability between calculation and delivery.MethodsThe GLAaS algorithm was applied and tested on a set of RapidArc fields at both low (6 MV) and high (18 MV) beam energies with a PV-aS1000 detector. Pilot tests for short arcs were performed on a 6 MV beam associated to a PV-aS500. RapidArc is a novel planning and delivery method in the category of intensity modulated arc therapies aiming to deliver highly modulated plans with variable MLC shapes, dose rate and gantry speed during rotation. Tests were repeated for entire (360 degrees) gantry rotations on composite dose plans and for short partial arcs (of ~6 or 12 degrees) to assess GLAaS and RapidArc mutual relationships on global and fine delivery scales. The gamma index concept of Low and the Modulation Index concept of Webb were applied to compare quantitatively TPS dose matrices and dose converted PV images.ResultsThe Gamma Agreement Index computed for a Distance to Agreement of 3 mm and a Dose Difference (ΔD) of 3% was, as mean ± 1 SD, 96.7 ± 1.2% at 6 MV and 94.9 ± 1.3% at 18 MV, over the field area. These findings deteriorated slightly is ΔD was reduced to 2% (93.4 ± 3.2% and 90.1 ± 3.1%, respectively) and improved with ΔD = 4% (98.3 ± 0.8% and 97.3 ± 0.9%, respectively). For all tests a grid of 1 mm and the AAA photon dose calculation algorithm were applied. The spatial resolution of the PV-aS1000 is 0.392 mm/pxl. The Modulation Index for calculations resulted 17.0 ± 3.2 at 6 MV and 15.3 ± 2.7 at 18 MV while the corresponding data for measurements were: 18.5 ± 3.7 and 17.5 ± 3.7. Partial arcs findings were (for ΔD = 3%): GAI = 96.7 ± 0.9% for 6° rotations and 98.0 ± 1.1% for 12° rotations.ConclusionThe GLAaS method can be considered as a valid Quality Assurance tool for the verification of RapidArc fields. The two implementations (composite rotation or short arcs) allow the verification of either the entire delivery or of short partial segments to possibly identify local discrepancies between delivery and calculations. RapidArc, according to the findings, appears to be a safe delivery method in terms of dosimetric accuracy allowing its clinical application.

Collaboration


Dive into the Antonella Fogliata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge