Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonella Fruscione is active.

Publication


Featured researches published by Antonella Fruscione.


Astrophysical Journal Supplement Series | 2009

The Chandra COSMOS Survey, I: Overview and Point Source Catalog

M. Elvis; F. Civano; C. Vignali; S. Puccetti; F. Fiore; N. Cappelluti; T. Aldcroft; Antonella Fruscione; G. Zamorani; A. Comastri; M. Brusa; R. Gilli; Takamitsu Miyaji; F. Damiani; A. M. Koekemoer; Alexis Finoguenov; H. Brunner; Claudia M. Urry; J. D. Silverman; V. Mainieri; Guenther Hasinger; Richard E. Griffiths; Marcella Carollo; Heng Hao; L. Guzzo; A. W. Blain; Daniela Calzetti; C. L. Carilli; P. Capak; Stefano Ettori

The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.5 deg^2 of the COSMOS field (centered at 10 ^h , +02 ^o ) with an effective exposure of ~160 ks, and an outer 0.4 deg^2 area with an effective exposure of ~80 ks. The limiting source detection depths are 1.9 × 10^(–16) erg cm^(–2) s^(–1) in the soft (0.5-2 keV) band, 7.3 × 10^(–16) erg cm^(–2) s^(–1) in the hard (2-10 keV) band, and 5.7 × 10^(–16) erg cm^(–2) s^(–1) in the full (0.5-10 keV) band. Here we describe the strategy, design, and execution of the C-COSMOS survey, and present the catalog of 1761 point sources detected at a probability of being spurious of <2 × 10^(–5) (1655 in the full, 1340 in the soft, and 1017 in the hard bands). By using a grid of 36 heavily (~50%) overlapping pointing positions with the ACIS-I imager, a remarkably uniform (±12%) exposure across the inner 0.5 deg^2 field was obtained, leading to a sharply defined lower flux limit. The widely different point-spread functions obtained in each exposure at each point in the field required a novel source detection method, because of the overlapping tiling strategy, which is described in a companion paper. This method produced reliable sources down to a 7-12 counts, as verified by the resulting logN-logS curve, with subarcsecond positions, enabling optical and infrared identifications of virtually all sources, as reported in a second companion paper. The full catalog is described here in detail and is available online.


The Astrophysical Journal | 2010

THE XMM-NEWTON WIDE-FIELD SURVEY IN THE COSMOS FIELD (XMM-COSMOS): DEMOGRAPHY AND MULTIWAVELENGTH PROPERTIES OF OBSCURED AND UNOBSCURED LUMINOUS ACTIVE GALACTIC NUCLEI*

M. Brusa; F. Civano; A. Comastri; Takamitsu Miyaji; M. Salvato; G. Zamorani; N. Cappelluti; F. Fiore; G. Hasinger; V. Mainieri; Andrea Merloni; A. Bongiorno; P. Capak; M. Elvis; R. Gilli; Heng Hao; Knud Jahnke; Anton M. Koekemoer; O. Ilbert; E. Le Floc'h; E. Lusso; M. Mignoli; E. Schinnerer; J. D. Silverman; Ezequiel Treister; J. D. Trump; C. Vignali; M. Zamojski; T. Aldcroft; H. Aussel

We report the final optical identifications of the medium-depth (~60 ksec), contiguous (2 deg^2) XMM-Newton survey of the COSMOS field. XMM-Newton has detected ~800 X-ray sources down to limiting fluxes of ~5x10^{-16}, ~3x10^{-15}, and ~7x10^{-15} erg/cm2/s in the 0.5-2 keV, 2-10 keV and 5-10 keV bands, respectively. The work is complemented by an extensive collection of multi-wavelength data from 24 micron to UV, available from the COSMOS survey, for each of the X-ray sources, including spectroscopic redshifts for ~50% of the sample, and high-quality photometric redshifts for the rest. The XMM and multiwavelength flux limits are well matched: 1760 (98%) of the X-ray sources have optical counterparts, 1711 (~95%) have IRAC counterparts, and 1394 (~78%) have MIPS 24micron detections. Thanks to the redshift completeness (almost 100%) we were able to constrain the high-luminosity tail of the X-ray luminosity function confirming that the peak of the number density of logL_X>44.5 AGN is at z~2. Spectroscopically-identified obscured and unobscured AGN, as well as normal and starforming galaxies, present well-defined optical and infrared properties. We devised a robust method to identify a sample of ~150 high redshift (z>1), obscured AGN candidates for which optical spectroscopy is not available. We were able to determine that the fraction of the obscured AGN population at the highest (L_X>10^{44} erg s^{-1}) X-ray luminosity is ~15-30% when selection effects are taken into account, providing an important observational constraint for X-ray background synthesis. We studied in detail the optical spectrum and the overall spectral energy distribution of a prototypical Type 2 QSO, caught in a stage transitioning from being starburst dominated to AGN dominated, which was possible to isolate only thanks to the combination of X-ray and infrared observations.


Astronomy and Astrophysics | 2009

The XMM-Newton wide-field survey in the COSMOS field - The point-like X-ray source catalogue

N. Cappelluti; M. Brusa; G. Hasinger; A. Comastri; G. Zamorani; A. Finoguenov; R. Gilli; S. Puccetti; Takamitsu Miyaji; M. Salvato; C. Vignali; T. Aldcroft; H. Böhringer; H. Brunner; F. Civano; M. Elvis; F. Fiore; Antonella Fruscione; Richard E. Griffiths; L. Guzzo; A. Iovino; Anton M. Koekemoer; V. Mainieri; N. Z. Scoville; Patrick Lynn Shopbell; J. D. Silverman; Claudia M. Urry

Context. The COSMOS survey is a multiwavelength survey aimed to study the evolution of galaxies, AGN and large scale structures. Within this survey XMM-COSMOS a powerful tool to detect AGN and galaxy clusters. The XMM-COSMOS is a deep X-ray survey over the full 2 deg^2 of the COSMOS area. It consists of 55 XMM-Newton pointings for a total exposure of ~1.5 Ms with an average vignetting-corrected depth of 40 ks across the field of view and a sky coverage of 2.13 deg^2. Aims. We present the catalogue of point-like X-ray sources detected with the EPIC CCD cameras, the log N − log S relations and the X-ray colour–colour diagrams. Methods. The analysis was performed using the XMM-SAS data analysis package in the 0.5–2 keV, 2–10 keV and 5–10 keV energy bands. Source detection has been performed using a maximum likelihood technique especially designed for raster scan surveys. The completeness of the catalogue as well as log N − log S and source density maps have been calibrated using Monte Carlo simulations. Results. The catalogs contains a total of 1887 unique sources detected in at least one band with likelihood parameter det_ml > 10. The survey, which shows unprecedented homogeneity, has a flux limit of ~1.7×10^(−15) erg cm^(−2) s^(−1), ~9.3×10^(−15) erg cm^(−2) s^(−1) and ~1.3×10^(−14) erg cm^(−2) s^(−1) over 90% of the area (1.92 deg^2) in the 0.5–2 keV, 2–10 keV and 5–10 keV energy band, respectively. Thanks to the rather homogeneous exposure over a large area, the derived log N − log S relations are very well determined over the flux range sampled by XMM-COSMOS. These relations have been compared with XRB synthesis models, which reproduce the observations with an agreement of ~10% in the 5–10 keV and 2–10 keV band, while in the 0.5–2 keV band the agreement is of the order of ~20%. The hard X-ray colors confirmed that the majority of the extragalactic sources in a bright subsample are actually type I or type II AGN. About 20% of the sources have a X-ray luminosity typical of AGN (L_X > 10^(42) erg/s) although they do not show any clear signature of nuclear activity in the optical spectrum.


The Astrophysical Journal | 2002

Chandra Discovery of a Tree in the X-Ray Forest toward PKS 2155–304: The Local Filament?

Fabrizio Nicastro; A. Zezas; Jeremy J. Drake; M. Elvis; F. Fiore; Antonella Fruscione; Massimo Marengo; Smita Mathur; Stefano Bianchi

We present the first X-ray detection of resonant absorption from warm/hot local gas either in our Galaxy, or in the intergalactic space surrounding our Galaxy, along the line of sight toward the blazar PKS 2155-304. The Chandra HRCS/LETG spectrum of this z = 0.116 source clearly shows, at ≥5 σ level, unresolved (FWHM ≤ 800 km s-1 at a 2 σ confidence level) O VII Kα and Ne IX Kα resonant absorption lines at 21.603 and 13.448 A (i.e., cz = 14 km s-1 in the rest frame, from the O VII Kα line). O VIII Kα and O VII Kβ from the same system are also detected at a lower significance level (i.e., ~3 σ), while upper limits are set on O VIII Kβ, Ne X Kα, and Ne IX Kβ. The Far Ultraviolet Spectroscopic Explorer spectrum of this source shows complex O VI 2s→2p absorption at the same redshift as the X-ray system, made by at least two components: one relatively narrow (FWHM = 106 ± 9 km s-1) and slightly redshifted (cz = 36 ± 6 km s-1), and one broader (FWHM = 158 ± 26 km s-1) and blueshifted (cz = -135 ± 14 km s-1). We demonstrate that the physical states of the UV and X-ray absorbers are hard to reconcile with a single, purely collisionally ionized, equilibrium plasma. We propose instead that the X-ray and at least the broader and blueshifted UV absorber are produced in a low-density intergalactic plasma, collapsing toward our Galaxy, consistent with the predictions of a warm-hot intergalactic medium from numerical simulations. We find that any reasonable solution requires overabundance of Ne compared to O by a factor of ~2, with respect to the solar value. We propose several scenarios to account for this observation.


The Astrophysical Journal | 2011

Dissecting photometric redshift for active galactic nucleus using XMM- and Chandra-COSMOS samples

M. Salvato; O. Ilbert; Guenther Hasinger; F. Civano; G. Zamorani; M. Brusa; M. Elvis; C. Vignali; H. Aussel; A. Comastri; F. Fiore; E. Le Floc'h; V. Mainieri; S. Bardelli; M. Bolzonella; A. Bongiorno; P. Capak; Karina Caputi; N. Cappelluti; C. M. Carollo; T. Contini; B. Garilli; A. Iovino; S. Fotopoulou; Antonella Fruscione; R. Gilli; C. Halliday; Jean-Paul Kneib; Y. Kakazu; J. Kartaltepe

In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy σ_(Δz/(1+z(spec))~0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg^2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H_(AB) = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.


The Astrophysical Journal | 2002

Is RX J1856.5?3754 a Quark Star?

Jeremy J. Drake; Herman L. Marshall; S. Dreizler; Peter E. Freeman; Antonella Fruscione; Michael Juda; Vinay L. Kashyap; Fabrizio Nicastro; Deron O. Pease; Bradford J. Wargelin; K. Werner

Deep Chandra Low Energy Transmission Grating and High Resolution Camera spectroscopic observations of the isolated neutron star candidate RX J1856.5-3754 have been analyzed to search for metallic and resonance cyclotron spectral features and for pulsation behavior. As found from earlier observations, the X-ray spectrum is well represented by an ~60 eV (7 × 105 K) blackbody. No unequivocal evidence of spectral line or edge features has been found, arguing against metal-dominated models. The data contain no evidence for pulsation, and we place a 99% confidence upper limit of 2.7% on the unaccelerated pulse fraction over a wide frequency range from 10-4 to 100 Hz. We argue that the derived interstellar medium neutral hydrogen column density of 8 × 1019 cm-2 ≤ NH ≤ 1.1 × 1020 cm-2 favors the larger distance from two recent Hubble Space Telescope parallax analyses, placing RX J1856.5-3754 at ~140 pc instead of ~60 pc and in the outskirts of the R CrA dark molecular cloud. That such a comparatively rare region of high interstellar matter (ISM) density is precisely where an isolated neutron star reheated by accretion of ISM would be expected is either entirely coincidental or current theoretical arguments excluding this scenario for RX J1856.5-3754 are premature. Taken at face value, the combined observational evidence—a lack of spectral and temporal features and an implied radius of R∞ = 3.8-8.2 km that is too small for current neutron star models—points to a more compact object, such as allowed for quark matter equations of state.


Nature | 2005

The mass of the missing baryons in the X-ray forest of the warm–hot intergalactic medium

Fabrizio Nicastro; Smita Mathur; M. Elvis; Jeremy J. Drake; Taotao Fang; Antonella Fruscione; Y. Krongold; Herman Marshall; Rik J. Williams; A. Zezas

Recent cosmological measurements indicate that baryons comprise about four per cent of the total mass-energy density of the Universe, which is in accord with the predictions arising from studies of the production of the lightest elements. It is also in agreement with the actual number of baryons detected at early times (redshifts z > 2). Close to our own epoch (z < 2), however, the number of baryons detected add up to just over half (∼ 55 per cent) of the number seen at z > 2 (refs 6–11), meaning that about ∼45 per cent are ‘missing’. Here we report a determination of the mass-density of a previously undetected population of baryons, in the warm–hot phase of the intergalactic medium. We show that this mass density is consistent, within the uncertainties, with the mass density of the missing baryons.


The Astrophysical Journal | 2016

The Chandra COSMOS Legacy survey: overview and point source catalog

F. Civano; S. Marchesi; A. Comastri; Meg Urry; M. Elvis; N. Cappelluti; S. Puccetti; M. Brusa; G. Zamorani; Guenther Hasinger; T. Aldcroft; D. M. Alexander; V. Allevato; H. Brunner; P. Capak; Alexis Finoguenov; F. Fiore; Antonella Fruscione; R. Gilli; K. Glotfelty; Richard E. Griffiths; Heng Hao; Fiona A. Harrison; Knud Jahnke; J. Kartaltepe; A. Karim; Stephanie M. LaMassa; G. Lanzuisi; Takamitsu Miyaji; P. Ranalli

The COSMOS-Legacy survey is a 4.6 Ms Chandra program that has imaged 2.2 deg2 of the COSMOS field with an effective exposure of ≃ 160 ks over the central 1.5 deg^2 and of ≃ 80 ks in the remaining area. The survey is the combination of 56 new observations obtained as an X-ray Visionary Project with the previous C-COSMOS survey. We describe the reduction and analysis of the new observations and the properties of 2273 point sources detected above a spurious probability of 2 × 10^(−5). We also present the updated properties of the C-COSMOS sources detected in the new data. The whole survey includes 4016 point sources (3814, 2920 and 2440 in the full, soft, and hard band). The limiting depths are 2.2 × 10^(−16), 1.5 × 10^(−15), and 8.9 × 10^(−16) erg cm^(-2)s^(-1) in the 0.5–2, 2–10, and 0.5–10 keV bands, respectively. The observed fraction of obscured active galactic nuclei with a column density >10^(22) cm^(−2) from the hardness ratio (HR) is 50_(-16)^(+17)%. Given the large sample we compute source number counts in the hard and soft bands, significantly reducing the uncertainties of 5%–10%. For the first time we compute number counts for obscured (HR > −0.2) and unobscured (HR < −0.2) sources and find significant differences between the two populations in the soft band. Due to the unprecedent large exposure, COSMOS-Legacy area is three times larger than surveys at similar depths and its depth is three times fainter than surveys covering similar areas. The area-flux region occupied by COSMOS-Legacy is likely to remain unsurpassed for years to come.


Astrophysical Journal Supplement Series | 1994

The distribution of neutral hydrogen in the interstellar medium. 1: The data

Antonella Fruscione; Isabel Hawkins; Patrick Jelinsky; Alexandria B. Wiercigroch

We compile, from the existing literature, the largest sample to date (842 data points) of hydrogen column density measurements, N(H I), of the gas in the interstellar medium. We include only results obtained from absorption measurements toward individual stars (594 in our sample) in an effort to construct a three-dimensional picture of the interstellar gas. We derive hydrogen column densities toward a fraction of the stars in the sample from published column density measurements of metal ions. A three-dimensional physical model derived from this data set will be presented in a companion paper. The observed stars span distances from a few parsecs to a few thousand parsecs, and more than half of the sample serves to describe the local interstellar medium within a few hundred parsecs of the Sun. Hydrogen column densities range from 10(exp 17) to 10(exp 22)/sq cm. We describe here the various observational methods used to estimate the hydrogen column densities and present the table with the stellar and hydrogen column density data. The provided table is intended as a global reference work, not to introduce new results.


Monthly Notices of the Royal Astronomical Society | 1998

A swan song: the disappearance of the nucleus of NGC 4051 and the echo of its past glory

M. Guainazzi; Fabrizio Nicastro; F. Fiore; Giorgio Matt; I. M. McHardy; Astrid Orr; P. Barr; Antonella Fruscione; I. E. Papadakis; An Parmar; P. Uttley; Gc Perola; Luigi Piro

BeppoSAX observed the low-luminous Seyfert 1 Galaxy NGC4051 in a ultra-dim X-ray state. The 2-10 keV flux (1.26 x 10^{-12} erg/cm^2/s) was about 20 times fainter than its historical average value, and remained steady along the whole observation (~2.3 days). The observed flat spectrum (\Gamma ~ 0.8) and intense iron line (EW ~600 eV) are best explained assuming that the active nucleus has switched off, leaving only a residual reflection component visible.

Collaboration


Dive into the Antonella Fruscione's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Mainieri

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge