Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonella Giuri is active.

Publication


Featured researches published by Antonella Giuri.


RSC Advances | 2016

Graphene oxide as a catalyst for ring opening reactions in amine crosslinking of epoxy resins

Maria Rosaria Acocella; C. Esposito Corcione; Antonella Giuri; Mario Maggio; Alfonso Maffezzoli; Gaetano Guerra

The influence of different graphite-based nanofillers on epoxide ring opening reactions, as induced by amines for diglycidyl ether of bisphenol A (DGEBA), is studied. Direct kinetic studies, with full chemical characterization and quantitative evaluation of the low molecular mass products, for reactions of DGEBA with primary and secondary monoamines as well with alcohols, are conducted. Moreover, the kinetic behavior of a commercial epoxy resin based on DGEBA and a diamine, leading to crosslinked insoluble networks, is studied by indirect methods, such as differential scanning calorimetry (DSC) and rheometry. The reported results show a relevant catalytic activity of graphene oxide on epoxy resin crosslinking by amines. For instance, for a graphene oxide content of 3 wt%, the exothermic crosslinking DSC peak is shifted (upon heating at 10 °C min−1) from 113 °C down to 96 °C, while the gel time at 50 °C is reduced by a factor of 2.5. This behavior is due to the ability of graphene oxide to catalyze primary amine–epoxy, secondary amine–epoxy and mainly hydroxyl–epoxy additions.


Interface Focus | 2013

Preparation and characterization of cellulose-based foams via microwave curing

Christian Demitri; Antonella Giuri; Maria Grazia Raucci; Daniela Giugliano; Marta Madaghiele; Alessandro Sannino; Luigi Ambrosio

In this work, a mixture of a sodium salt of carboxymethylcellulose (CMCNa) and polyethylene glycol diacrylate (PEGDA700) was used for the preparation of a microporous structure by using the combination of two different procedures. First, physical foaming was induced using Pluronic as a blowing agent, followed by a chemical stabilization. This second step was carried out by means of an azobis(2-methylpropionamidine)dihydrochloride as the thermoinitiator (TI). This reaction was activated by heating the sample homogeneously using a microwave generator. Finally, the influence of different CMCNa and PEGDA700 ratios on the final properties of the foams was investigated. The viscosity, water absorption capacity, elastic modulus and porous structure were evaluated for each sample. In addition, preliminary biological characterization was carried out with the aim to prove the biocompatibility of the resulting material. The foam, including 20% of PEGDA700 in the mixture, demonstrated higher viscosity and stability before thermo-polymerization. In addition, increased water absorption capacity, mechanical resistance and a more uniform microporous structure were obtained for this sample. In particular, foam with 3% of CMCNa shows a hierarchical structure with open pores of different sizes. This morphology increased the properties of the foams. The full set of samples demonstrated an excellent biocompatibility profile with a good cell proliferation rate of more than 7 days.


Journal of Biomedical Materials Research Part A | 2016

Cellulose‐based porous scaffold for bone tissue engineering applications: Assessment of hMSC proliferation and differentiation

Christian Demitri; Maria Grazia Raucci; Antonella Giuri; Vincenzo Maria De Benedictis; Daniela Giugliano; Paola Calcagnile; Alessandro Sannino; Luigi Ambrosio

Physical foaming combined with microwave-induced curing was used in this study to develop an innovative device for bone tissue regeneration. In the first step of the process, a stable physical foaming was induced using a surfactant (i.e. pluronic) as blowing agent of a homogeneous blend of Sodium salt of carboxymethylcellulose (CMCNa) and polyethylene glycol diacrylate (PEGDA700) solution. In the second step, the porous structure of the scaffold was chemically stabilized by radical polymerization induced by a homogeneous rapid heating of the sample in a microwave reactor. In this step 2,2-Azobis[2-(2-imidazolin-2 yl)propane]Dihydrochloride was used as thermoinitiator (TI). CMCNa and PEGDA were mixed with different blends to correlate the properties of final product with the composition. The chemical properties of each sample were evaluated by spectroscopy analysis ATR-IR (before and after curing) in order to maximize reaction yield, and optimize kinetic parameters (i.e. time curing, microwave power). The stability of the materials was evaluated in vitro by degradation test in Phosphate Buffered Saline. Biological analyses were performed to evaluate the effect of scaffold materials on cellular behavior in terms of proliferation and early osteogenic differentiation of human Mesenchymal Stem Cells.


IEEE Transactions on Nanotechnology | 2016

UV Reduced Graphene Oxide PEDOT:PSS Nanocomposite for Perovskite Solar Cells

Antonella Giuri; Sofia Masi; Silvia Colella; Andrea Listorti; Aurora Rizzo; Giuseppe Gigli; Andrea Liscio; Emanuele Treossi; Vincenzo Palermo; Simona Rella; Cosimino Malitesta; Carola Esposito Corcione

In this paper, we have investigated the possibility to realize a nanocomposite buffer layer for perovskite solar cells, based on polyelectrolyte poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) PEDOT:PSS and graphene oxide (GO). To this aim, GO, prepared by a modified Hummers method, was mixed with PEDOT:PSS by solvent swelling method and reduced in situ into the polymer matrix through a green and simple method, by using UV radiation. Thin nanocomposite layers were spin coated on different substrates and characterized by several techniques. GO reduction was first analyzed by XPS analyses, monitoring the decrease of the intensity of the peak of the oxygen groups linked to carbon. The grade of the dispersion of GO into PEDOT:PSS was also analyzed by scanning electron microscopy. Sheet resistance measurements of the films with and without GO before and after UV treatment was performed. The thermal stability of the nanocomposites was then evaluated by thermogravimetric analyses. The nanocomposite layer was finally employed in a perovskite solar cell to evaluate the effect of GO reduction on power conversion efficiency. The interface interaction between the nanocomposite and the perovskite precursors was analyzed by contact angle measurements.


Nanotechnology | 2017

GO/PEDOT:PSS nanocomposites: effect of different dispersing agents on rheological, thermal, wettability and electrochemical properties

Antonella Giuri; Sofia Masi; Silvia Colella; Andrea Listorti; Aurora Rizzo; Andrea Liscio; Emanuele Treossi; Vincenzo Palermo; Giuseppe Gigli; Claudio Mele; Carola Esposito Corcione

In this work glucose (G), α-cyclodextrin (α-CD) and sodium salt of carboxymethyl cellulose (CMCNa) are used as dispersing agents for graphene oxide (GO), exploring the influence of both saccharide units and geometric/steric hindrance on the rheological, thermal, wettability and electrochemical properties of a GO/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) nanocomposite. By acting on the saccharide-based additives, we can modulate the rheological, thermal, and wettability properties of the GO/PEDOT:PSS nanocomposite. Firstly, the influence of all the additives on the rheological behaviour of GO and PEDOT:PSS was investigated separately in order to understand the effect of the dispersing agent on both the components of the ternary nanocomposite, individually. Subsequently, steady shear and dynamic frequency tests were conducted on all the nanocomposite solutions, characterized by thermal, wettability and morphological analysis. Finally, the electrochemical properties of the GO/PEDOT composites with different dispersing agents for supercapacitors were investigated using cyclic voltammetry (CV). The CV results revealed that GO/PEDOT with glucose exhibited the highest specific capacitance among the systems investigated.


Polymers | 2017

Catalytic Activity of Oxidized Carbon Black and Graphene Oxide for the Crosslinking of Epoxy Resins

Maria Rosaria Acocella; Carola Esposito Corcione; Antonella Giuri; Mario Maggio; Gaetano Guerra; Alfonso Maffezzoli

This article compares the catalytic activities of oxidized carbon black (oCB) and graphene oxide (eGO) samples on the kinetics of a reaction of diglycidyl ether of bisphenol A (DGEBA) with a diamine, leading to crosslinked insoluble networks. The study is mainly conducted by rheometry and Differential Scanning Calorimetry (DSC). Following the same oxidation procedure, CB samples are more efficiently oxidized than graphite samples. For instance, CB and graphite samples with high specific surface areas (151 and 308 m2/g), as oxidized by the Hummers’ method, exhibit O/C wt/wt ratios of 0.91 and 0.62, respectively. Due to the higher oxidation levels, these oCB samples exhibit a higher catalytic activity toward the curing of epoxy resins than fully exfoliated graphene oxide.


Journal of Tissue Engineering and Regenerative Medicine | 2017

Microwave-induced porosity and bioactivation of chitosan-PEGDA scaffolds: morphology, mechanical properties and osteogenic differentiation.

Christian Demitri; Antonella Giuri; Vincenzo Maria De Benedictis; Maria Grazia Raucci; Daniela Giugliano; Alessandro Sannino; Luigi Ambrosio

In this study, a new foaming method, based on physical foaming combined with microwave‐induced curing, is proposed in combination with a surface bioactivation to develop scaffold for bone tissue regeneration. In the first step of the process, a stable physical foaming was induced using a surfactant (Pluronic) as blowing agent of a homogeneous blend of Chitosan and polyethylene glycol diacrylate (PEGDA700) solutions. In the second step, the porous structure of the foaming was chemically stabilized by radical polymerization induced by homogeneous heating of the sample in a microwave reactor. In this step, 2,2‐azobis[2‐(2‐imidazolin‐2yl)propane]dihydrochloride was used as thermoinitiator (TI). Chitosan and PEGDA were mixed in different blends to investigate the influence of the composition on the final properties of the material. The chemical properties of each sample were evaluated by infrared attenuated total reflectance analysis, before and after curing in order to maximize reaction yield and optimize kinetic parameters (i.e. time curing, microwave power). Absorption capacity, elastic modulus, porosity and morphology of the porous structure were measured for each sample. The stability of materials was evaluated in vitro by degradation test in phosphate‐buffered saline. To improve the bioactivity and biological properties of chitosan scaffold, a biomineralization process was used. Biological characterization was carried out with the aim to prove the effect of biomineralization scaffold on human mesenchymal stem cells behaviour. Copyright


POLYMER PROCESSING WITH RESULTING MORPHOLOGY AND PROPERTIES: Feet in the Present and Eyes at the Future: Proceedings of the GT70 International Conference | 2015

Cure reaction of epoxy resins catalyzed by graphite-based nanofiller

C. Esposito Corcione; Maria Rosaria Acocella; Antonella Giuri; A. Maffezzoli; Gaetano Guerra

A significant effort was directed to the synthesis of graphene stacks/epoxy nanocomposites and to the analysis of the effect of a graphene precursor on cure reaction of a model epoxy matrix. A comparative thermal analysis of epoxy resins filled with an exfoliated graphite oxide eGO were conducted. The main aim was to understand the molecular origin of the influence of eGO on the Tg of epoxy resins. The higher Tg values previously observed for low curing temperatures, for epoxy resins with graphite-based nanofillers, were easily rationalized by a catalytic activity of graphitic layers on the reaction between the epoxy and amine groups of the resin, which leads to higher crosslinking density in milder conditions. A kinetic analysis of the cure mechanism of the epoxy resin associated to the catalytical activity of the graphite based filler was performed by isothermal DSC measurements. The DSC results showed that the addition of graphite based filler greatly increased the enthalpy of epoxy reaction and the re...


Scientific Reports | 2018

Ultra-Bright Near-Infrared Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-off

Antonella Giuri; Zhongcheng Yuan; Yanfeng Miao; Jian-Pu Wang; Feng Gao; Nicola Sestu; Michele Saba; Giovanni Bongiovanni; Silvia Colella; Carola Esposito Corcione; Giuseppe Gigli; Andrea Listorti; Aurora Rizzo

Herein, an insulating biopolymer is exploited to guide the controlled formation of micro/nano-structure and physical confinement of α-δ mixed phase crystalline grains of formamidinium lead iodide (FAPbI3) perovskite, functioning as charge carrier concentrators and ensuring improved radiative recombination and photoluminescence quantum yield (PLQY). This composite material is used to build highly efficient near-infrared (NIR) FAPbI3 Perovskite light-emitting diodes (PeLEDs) that exhibit a high radiance of 206.7 W/sr*m2, among the highest reported for NIR-PeLEDs, obtained at a very high current density of 1000 mA/cm2, while importantly avoiding the efficiency roll-off effect. In depth photophysical characterization allows to identify the possible role of the biopolymer in i) enhancing the radiative recombination coefficient, improving light extraction by reducing the refractive index, or ii) enhancing the effective optical absorption because of dielectric scattering at the polymer-perovskite interfaces. Our study reveals how the use of insulating matrixes for the growth of perovskites represents a step towards high power applications of PeLEDs.


Journal of Thermal Analysis and Calorimetry | 2018

Biodegradable extruded thermoplastic maize starch for outdoor applications

Antonella Giuri; Silvia Colella; Andrea Listorti; Aurora Rizzo; Carola Esposito Corcione

In the recent years, great progress was achieved in the development of biodegradable products based on agricultural raw materials. Among them, one of the most promising and diffused biomaterials is represented by starch. For this reason, different approaches have already been explored to use starch as a natural source for the production of biodegradable thermoplastic polymers. However, there is still a lack of a controlled, easy and cheap procedure to process maize native starch in order to obtain a highly performing thermoplastic polymer. The purpose of this paper is the development of a simple and reproducible method able to produce a thermoplastic starch that can be easily transformed into extruded objects, suitable for several potential applications. To reach this aim, a proper plasticizer was added to a commercial maize starch at different concentrations corresponding to mass fraction from 50 to 70% (in the following text %). The effect of the different amounts of the plasticizer on the processability of the starch powder was assessed by varying the parameters during the extrusion process. The interaction of the structure of starch with the plasticizer, firstly, and the final thermal and physical–mechanical properties of the extruded thermoplastic starch samples, secondly, were analysed by using several techniques: differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, UV transmittance, moisture absorption, colorimetric and mechanical tests. The samples containing 50% of plasticizer, in possess of the best physical and thermal performances, were further characterized in terms of durability, in order to predict their lifetime in outdoor conditions, by using artificial ageing tests, such as moisture absorption and QUV accelerated weathering tests.

Collaboration


Dive into the Antonella Giuri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Listorti

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Aurora Rizzo

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Silvia Colella

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Sofia Masi

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge