Antonella Grassi
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonella Grassi.
Journal of High Energy Physics | 2014
Mirjam Cvetic; Antonella Grassi; Denis Klevers; Hernan Piragua
A bstractWe develop geometric techniques to determine the spectrum and the chiral indices of matter multiplets for four-dimensional F-theory compactifications on elliptic Calabi-Yau fourfolds with rank two Mordell-Weil group. The general elliptic fiber is the Calabi-Yau onefold in dP2. We classify its resolved elliptic fibrations over a general base B. The study of singularities of these fibrations leads to explicit matter representations, that we determine both for U(1) × U(1) and SU(5) × U(1) × U(1) constructions. We determine for the first time certain matter curves and surfaces using techniques involving prime ideals. The vertical cohomology ring of these fourfolds is calculated for both cases and general formulas for the Euler numbers are derived. Explicit calculations are presented for a specific base B = ℙ3. We determine the general G4-flux that belongs to
Journal of High Energy Physics | 2013
Antonella Grassi; James Halverson; Julius L. Shaneson
H_V^{{\left( {2,2} \right)}}
Journal of High Energy Physics | 2015
Antonella Grassi; James Halverson; Julius L. Shaneson; Washington Taylor
of the resolved Calabi-Yau fourfolds. As a by-product, we derive for the first time all conditions on G4-flux in general F-theory compactifications with a non-holomorphic zero section. These conditions have to be formulated after a circle reduction in terms of Chern-Simons terms on the 3D Coulomb branch and invoke M-theory/F-theory duality. New Chern-Simons terms are generated by Kaluza-Klein states of the circle compactification. We explicitly perform the relevant field theory computations, that yield non-vanishing results precisely for fourfolds with a non-holomorphic zero section. Taking into account the new Chern-Simons terms, all 4D matter chiralities are determined via 3D M-theory/F-theory duality. We independently check these chiralities using the subset of matter surfaces we determined. The presented techniques are general and do not rely on toric data.
Communications in Mathematical Physics | 2015
Antonella Grassi; James Halverson; Julius L. Shaneson
A bstractWe utilize the deformation theory of algebraic singularities to study charged matter in compactifications of M-theory, F-theory, and type IIa string theory on ellipti- cally fibered Calabi-Yau manifolds. In F-theory, this description is more physical than that of resolution. We describe how two-cycles can be identified and systematically studied after deformation. For ADE singularities, we realize non-trivial ADE representations as sublattices of
Journal of High Energy Physics | 2016
Mirjam Cvetic; Peng Song; Maximilian Poretschkin; Antonella Grassi; Denis Klevers
{{\mathbb{Z}}^N}
Journal of Geometry and Physics | 2018
Philipp Arras; Antonella Grassi; Timo Weigand
, where N is the multiplicity of the codimension one singularity be- fore deformation. We give a method for the determination of Picard-Lefschetz vanishing cycles in this context and utilize this method for one-parameter smooth deformations of ADE singularities. We give a general map from junctions to weights and demonstrate that Freudenthal’s recursion formula applied to junctions correctly reproduces the structure of high-dimensional ADE representations, including the 126 of SO(10) and the 43,758 of E6. We identify the Weyl group action in some examples, and verify its order in others. We describe the codimension two localization of matter in F-theory in the case of heterotic duality or simple normal crossing and demonstrate the branching of adjoint representations. Finally, we demonstrate geometrically that deformations correctly reproduce the appearance of non-simply-laced algebras induced by monodromy around codimension two singularities, showing the reduction of D4 to G2 in an example. A companion mathematical paper will follow.
Journal of High Energy Physics | 2017
Mirjam Cvetic; Antonella Grassi; Maximilian Poretschkin
A bstractMany four-dimensional supersymmetric compactifications of F-theory contain gauge groups that cannot be spontaneously broken through geometric deformations. These “non-Higgsable clusters” include realizations of SU(3), SU(2), and SU(3) × SU(2), but no SU(n) gauge groups or factors with n > 3. We study possible realizations of the standard model in F-theory that utilize non-Higgsable clusters containing SU(3) factors and show that there are three distinct possibilities. In one, fields with the non-abelian gauge charges of the standard model matter fields are localized at a single locus where non-perturbative SU(3) and SU(2) seven-branes intersect; cancellation of gauge anomalies implies that the simplest four-dimensional chiral SU(3) × SU(2) × U(1) model that may arise in this context exhibits standard model families. We identify specific geometries that realize non-Higgsable SU(3) and SU(3) × SU(2) sectors. This kind of scenario provides a natural mechanism that could explain the existence of an unbroken QCD sector, or more generally the appearance of light particles and symmetries at low energy scales.
International Journal of Mathematics | 2012
Ugo Bruzzo; Antonella Grassi
Singular fiber resolution does not describe the spontaneous breaking of gauge symmetry in F-theory, as the corresponding branch of the moduli space does not exist in the theory. Accordingly, even non-abelian gauge theories have not been fully understood in global F-theory compactifications. We present a systematic discussion of using singularity deformation, which does describe the spontaneous breaking of gauge symmetry in F-theory, to study non-abelian gauge symmetry. Since this branch of the moduli space also exists in the defining M-theory compactification, it provides the only known description of gauge theory states that exists in both pictures; they are string junctions in F-theory. We discuss how global deformations give rise to local deformations, and also give examples where local deformation can be utilized even in models where a global deformation does not exist. Utilizing deformations, we study a number of new examples, including non-perturbative descriptions of SU(3) and SU(2) gauge theories on seven-branes which do not admit a weakly coupled type IIb description. It may be of phenomenological interest that these non-perturbative descriptions do not exist for higher rank SU(N) theories.
Journal of High Energy Physics | 2001
Antonella Grassi; Zachary Guralnik; Burt A. Ovrut
A bstractWe study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U(m) × U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) × ℤk
International Journal of Mathematics | 1993
Antonella Grassi