Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonella Mangraviti is active.

Publication


Featured researches published by Antonella Mangraviti.


ACS Nano | 2015

Polymeric Nanoparticles for Nonviral Gene Therapy Extend Brain Tumor Survival in Vivo

Antonella Mangraviti; Stephany Y. Tzeng; Kristen L. Kozielski; Yuan Wang; Yike Jin; David Gullotti; Mariangela Pedone; Nitsa Buaron; Ann Liu; David R. Wilson; Sarah K. Hansen; Fausto J. Rodriguez; Guo Dong Gao; Francesco DiMeco; Henry Brem; Alessandro Olivi; Betty Tyler; Jordan J. Green

Biodegradable polymeric nanoparticles have the potential to be safer alternatives to viruses for gene delivery; however, their use has been limited by poor efficacy in vivo. In this work, we synthesize and characterize polymeric gene delivery nanoparticles and evaluate their efficacy for DNA delivery of herpes simplex virus type I thymidine kinase (HSVtk) combined with the prodrug ganciclovir (GCV) in a malignant glioma model. We investigated polymer structure for gene delivery in two rat glioma cell lines, 9L and F98, to discover nanoparticle formulations more effective than the leading commercial reagent Lipofectamine 2000. The lead polymer structure, poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-modified with 1-(3-aminopropyl)-4-methylpiperazine, is a poly(β-amino ester) (PBAE) and formed nanoparticles with HSVtk DNA that were 138 ± 4 nm in size and 13 ± 1 mV in zeta potential. These nanoparticles containing HSVtk DNA showed 100% cancer cell killing in vitro in the two glioma cell lines when combined with GCV exposure, while control nanoparticles encoding GFP maintained robust cell viability. For in vivo evaluation, tumor-bearing rats were treated with PBAE/HSVtk infusion via convection-enhanced delivery (CED) in combination with systemic administration of GCV. These treated animals showed a significant benefit in survival (p = 0.0012 vs control). Moreover, following a single CED infusion, labeled PBAE nanoparticles spread completely throughout the tumor. This study highlights a nanomedicine approach that is highly promising for the treatment of malignant glioma.


Clinical Cancer Research | 2017

Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas

Jennifer E. Kim; Mira A. Patel; Antonella Mangraviti; Eileen S. Kim; Debebe Theodros; Esteban Velarde; Ann Liu; Eric W. Sankey; Ada Tam; Haiying Xu; Dimitrios Mathios; Christopher Jackson; Sarah Harris-Bookman; Tomas Garzon-Muvdi; Mary Sheu; Allison Martin; Betty Tyler; Phuoc T. Tran; Xiaobu Ye; Alessandro Olivi; Janis M. Taube; Peter C. Burger; Charles G. Drake; Henry Brem; Drew M. Pardoll; Michael Lim

Purpose: Checkpoint molecules like programmed death-1 (PD-1) and T-cell immunoglobulin mucin-3 (TIM-3) are negative immune regulators that may be upregulated in the setting of glioblastoma multiforme. Combined PD-1 blockade and stereotactic radiosurgery (SRS) have been shown to improve antitumor immunity and produce long-term survivors in a murine glioma model. However, tumor-infiltrating lymphocytes (TIL) can express multiple checkpoints, and expression of ≥2 checkpoints corresponds to a more exhausted T-cell phenotype. We investigate TIM-3 expression in a glioma model and the antitumor efficacy of TIM-3 blockade alone and in combination with anti-PD-1 and SRS. Experimental Design: C57BL/6 mice were implanted with murine glioma cell line GL261-luc2 and randomized into 8 treatment arms: (i) control, (ii) SRS, (iii) anti-PD-1 antibody, (iv) anti-TIM-3 antibody, (v) anti-PD-1 + SRS, (vi) anti-TIM-3 + SRS, (vii) anti-PD-1 + anti-TIM-3, and (viii) anti-PD-1 + anti-TIM-3 + SRS. Survival and immune activation were assessed. Results: Dual therapy with anti-TIM-3 antibody + SRS or anti-TIM-3 + anti-PD-1 improved survival compared with anti-TIM-3 antibody alone. Triple therapy resulted in 100% overall survival (P < 0.05), a significant improvement compared with other arms. Long-term survivors demonstrated increased immune cell infiltration and activity and immune memory. Finally, positive staining for TIM-3 was detected in 7 of 8 human GBM samples. Conclusions: This is the first preclinical investigation on the effects of dual PD-1 and TIM-3 blockade with radiation. We also demonstrate the presence of TIM-3 in human glioblastoma multiforme and provide preclinical evidence for a novel treatment combination that can potentially result in long-term glioma survival and constitutes a novel immunotherapeutic strategy for the treatment of glioblastoma multiforme. Clin Cancer Res; 23(1); 124–36. ©2016 AACR.


Science Translational Medicine | 2016

Anti–PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM

Dimitrios Mathios; Jennifer E. Kim; Antonella Mangraviti; Jillian Phallen; Chul-Kee Park; Christopher Jackson; Tomas Garzon-Muvdi; Eileen Kim; Debebe Theodros; Magdalena Polanczyk; Allison Martin; Ian Suk; Xiaobu Ye; Betty Tyler; Chetan Bettegowda; Henry Brem; Drew M. Pardoll; Michael Lim

Local chemotherapy synergizes with immunotherapy against glioblastoma, whereas systemic chemotherapy abrogates its antitumor effect. Combining drugs as the doctor ordered Cancer immunotherapy is rapidly increasing in prominence and being applied for a growing number of cancer types. Chemotherapy is still the mainstay of cancer treatment, however, and it can be difficult to find good ways to combine the two approaches. Mathios et al. addressed this problem by systematically evaluating the effectiveness of local or systemic chemotherapy given before or after immune checkpoint inhibition in mouse models of glioblastoma. The authors demonstrated that local chemotherapy was particularly effective in combination with checkpoint inhibition, whereas systemic chemotherapy was too damaging to the immune system to make for useful combinations. The immunosuppressive effects of chemotherapy present a challenge for designing effective cancer immunotherapy strategies. We hypothesized that although systemic chemotherapy (SC) exhibits negative immunologic effects, local chemotherapy (LC) can potentiate an antitumor immune response. We show that LC combined with anti–programmed cell death protein 1 (PD-1) facilitates an antitumor immune response and improves survival (P < 0.001) in glioblastoma. LC-treated mice had increased infiltration of tumor-associated dendritic cells and clonal expansion of antigen-specific T effector cells. In comparison, SC resulted in systemic and intratumoral lymphodepletion, with decreased immune memory in long-term survivors. Furthermore, adoptive transfer of CD8+ cells from LC-treated mice partially rescued SC-treated mice after tumor rechallenge. Last, the timing of chemo- and immunotherapy had differential effects on anti–PD-1 efficacy. This study suggests that both mode of delivery and timing have distinct effects on the efficacy of anti–PD-1. The results of this work could help guide the selection and scheduling of combination treatment for patients with glioblastoma and other tumor types.


Neuro-oncology | 2014

Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model

Xiaohua Hong; Li Liu; Meiyun Wang; Kai Ding; Ying Fan; Bo Ma; Bachchu Lal; Betty Tyler; Antonella Mangraviti; Silun Wang; John Wong; John Laterra; Jinyuan Zhou

BACKGROUND The inability of structural MRI to accurately measure tumor response to therapy complicates care management for patients with gliomas. The purpose of this study was to assess the potential of several noninvasive functional and molecular MRI biomarkers for the assessment of glioma response to radiotherapy. METHODS Fourteen U87 tumor-bearing rats were irradiated using a small-animal radiation research platform (40 or 20 Gy), and 6 rats were used as controls. MRI was performed on a 4.7 T animal scanner, preradiation treatment, as well as at 3, 6, 9, and 14 days postradiation. Image features of the tumors, as well as tumor volumes and animal survival, were quantitatively compared. RESULTS Structural MRI showed that all irradiated tumors still grew in size during the initial days postradiation. The apparent diffusion coefficient (ADC) values of tumors increased significantly postradiation (40 and 20 Gy), except at day 3 postradiation, compared with preradiation. The tumor blood flow decreased significantly postradiation (40 and 20 Gy), but the relative blood flow (tumor vs contralateral) did not show a significant change at most time points postradiation. The amide proton transfer weighted (APTw) signals of the tumor decreased significantly at all time points postradiation (40 Gy), and also at day 9 postradiation (20 Gy). The blood flow and APTw maps demonstrated tumor features that were similar to those seen on gadolinium-enhanced T1-weighted images. CONCLUSIONS Tumor ADC, blood flow, and APTw were all useful imaging biomarkers by which to predict glioma response to radiotherapy. The APTw signal was most promising for early response assessment in this model.


Journal of Ultrasound | 2014

Fusion imaging for intra-operative ultrasound-based navigation in neurosurgery

Francesco Prada; Massimiliano Del Bene; Luca Mattei; Cecilia Casali; Assunta Filippini; Federico G. Legnani; Antonella Mangraviti; Andrea Saladino; Alessandro Perin; Carla Richetta; Ignazio G. Vetrano; Alessandro Moiraghi; Marco Saini; Francesco DiMeco

The major shortcoming of image-guided navigation systems is the use of presurgically acquired image data, which does not account for intra-operative changes such as brain shift, tissue deformation and tissue removal occurring during the surgical procedure. Intra-operative ultrasound (iUS) is becoming widely used in neurosurgery but they lack orientation and panoramic view. In this article, we describe our procedure for US-based real-time neuro-navigation during surgery. We used fusion imaging between preoperative magnetic resonance imaging (MRI) and iUS for brain lesion removal in 67 patients so far. Surgical planning is based on preoperative MRI only. iUS images obtained during surgery are fused with the preoperative MRI. Surgery is performed under intra-operative US control. Relying on US imaging, it is possible to recalibrate navigated MRI imaging, adjusting distortion due to brain shift and tissue resection, continuously updating the two modalities. Ultrasound imaging provides excellent visualization of targets, their margins and surrounding structures. The use of navigated MRI is helpful in better understanding cerebral ultrasound images, providing orientation and panoramic view. Intraoperative US-guided neuro-navigation adjustments are very accurate and helpful in the event of brain shift. The use of this integrated system allows for a true real-time feedback during surgery.SommarioIl principale difetto della neurochirurgia guidata da immagini è il basarsi su immagini acquisite prima dell’intervento, che per ovvie ragioni non possono tenere conto di fenomeni intra-operatori come il brain-shift, la deformazione dei tessuti e l’asportazione di tessuto patologico. L’ecografia intra-operatoria (iUS) sta acquisendo sempre maggior rilevanza in ambito neurochirurgico ma è limitata dalla difficoltosa interpretazione dell’orientamento delle immagini e dalla scarsa panoramicità. In questo articolo descriviamo la nostra tecnica di neuronavigazione real-time basata sull’ecografia intra-operatoria. Fino ad ora abbiamo impiegato la fusione d’immagini tra la risonanza magnetica (MRI) pre-operatoria e l’iUS in 67 pazienti affetti da neoplasie cerebrali. La pianificazione dell’intervento e l’approccio chirurgico è basata sulla (MRI) pre-operatoria mentre l’intervento è guidato dall’iUS. Basandosi sull’iUS è possibile correggere la calibrazione delle immagini (MRI) pre-operatorie correggendo il brain-shift, aggiornando continuamente le due modalità. L’ecografia intra-operatoria permette una eccellente identificazione dei target, dei margini e delle strutture circostanti. L’uso del navigatore basato su (MRI) pre-operatoria è utile nella comprensione delle immagini ecografiche soprattutto per quanto riguarda l’orientazione e la visione panoramica. Le correzione del sistema di neuronavigazione basate sull’iUS sono accurate e utili nel caso di fenomeni intra-operatori come il brain-shift, la deformazione dei tessuti e l’asportazione di tessuto patologico. La neuronavigazione baasata sulla fusione d’immagini tra iUS e (MRI) pre-operatoria permette un vero feeback in real-time durante la chirurgia.


Neuro-oncology | 2015

Local delivery of cancer-cell glycolytic inhibitors in high-grade glioma

Robert T. Wicks; Javad Azadi; Antonella Mangraviti; Irma Zhang; Lee Hwang; Avadhut D. Joshi; Hansen Bow; Marianne Hütt-Cabezas; Kristin L. Martin; Michelle A. Rudek; Ming Zhao; Henry Brem; Betty Tyler

BACKGROUND 3-bromopyruvate (3-BrPA) and dichloroacetate (DCA) are inhibitors of cancer-cell specific aerobic glycolysis. Their application in glioma is limited by 3-BrPAs inability to cross the blood-brain-barrier and DCAs dose-limiting toxicity. The safety and efficacy of intracranial delivery of these compounds were assessed. METHODS Cytotoxicity of 3-BrPA and DCA were analyzed in U87, 9L, and F98 glioma cell lines. 3-BrPA and DCA were incorporated into biodegradable pCPP:SA wafers, and the maximally tolerated dose was determined in F344 rats. Efficacies of the intracranial 3-BrPA wafer and DCA wafer were assessed in a rodent allograft model of high-grade glioma, both as a monotherapy and in combination with temozolomide (TMZ) and radiation therapy (XRT). RESULTS 3-BrPA and DCA were found to have similar IC50 values across the 3 glioma cell lines. 5% 3-BrPA wafer-treated animals had significantly increased survival compared with controls (P = .0027). The median survival of rats with the 50% DCA wafer increased significantly compared with both the oral DCA group (P = .050) and the controls (P = .02). Rats implanted on day 0 with a 5% 3-BrPA wafer in combination with TMZ had significantly increased survival over either therapy alone. No statistical difference in survival was noted when the wafers were added to the combination therapy of TMZ and XRT, but the 5% 3-BrPA wafer given on day 0 in combination with TMZ and XRT resulted in long-term survivorship of 30%. CONCLUSION Intracranial delivery of 3-BrPA and DCA polymer was safe and significantly increased survival in an animal model of glioma, a potential novel therapeutic approach. The combination of intracranial 3-BrPA and TMZ provided a synergistic effect.


Biomaterials | 2016

Non-virally engineered human adipose mesenchymal stem cells produce BMP4, target brain tumors, and extend survival

Antonella Mangraviti; Stephany Y. Tzeng; David Gullotti; Kristen L. Kozielski; Jennifer E. Kim; Michael Seng; Sara Abbadi; Paula Schiapparelli; Rachel Sarabia-Estrada; Angelo L. Vescovi; Henry Brem; Alessandro Olivi; Betty Tyler; Jordan J. Green; Alfredo Quinones-Hinojosa

There is a need for enabling non-viral nanobiotechnology to allow safe and effective gene therapy and cell therapy, which can be utilized to treat devastating diseases such as brain cancer. Human adipose-derived mesenchymal stem cells (hAMSCs) display high anti-glioma tropism and represent a promising delivery vehicle for targeted brain tumor therapy. In this study, we demonstrate that non-viral, biodegradable polymeric nanoparticles (NPs) can be used to engineer hAMSCs with higher efficacy (75% of cells) than leading commercially available reagents and high cell viability. To accomplish this, we engineered a poly(beta-amino ester) (PBAE) polymer structure to transfect hAMSCs with significantly higher efficacy than Lipofectamine™ 2000. We then assessed the ability of NP-engineered hAMSCs to deliver bone morphogenetic protein 4 (BMP4), which has been shown to have a novel therapeutic effect by targeting human brain tumor initiating cells (BTIC), a source of cancer recurrence, in a human primary malignant glioma model. We demonstrated that hAMSCs genetically engineered with polymeric nanoparticles containing BMP4 plasmid DNA (BMP4/NP-hAMSCs) secrete BMP4 growth factor while maintaining their multipotency and preserving their migration and invasion capacities. We also showed that this approach can overcome a central challenge for brain therapeutics, overcoming the blood brain barrier, by demonstrating that NP-engineered hAMSCs can migrate to the brain and penetrate the brain tumor after both intranasal and systemic intravenous administration. Critically, athymic rats bearing human primary BTIC-derived tumors and treated intranasally with BMP4/NP-hAMSCs showed significantly improved survival compared to those treated with control GFP/NP-hAMCSs. This study demonstrates that synthetic polymeric nanoparticles are a safe and effective approach for stem cell-based cancer-targeting therapies.


Journal of Controlled Release | 2016

Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies

Antonella Mangraviti; David Gullotti; Betty Tyler; Henry Brem

Despite recent technological advancements and promising preclinical experiments, brain tumor patients are still met with limited treatment options. Some of the barriers to clinical improvements include the systemic toxicity of cytotoxic compounds, the impedance of the blood brain barrier (BBB), and the lack of therapeutic agents that can selectively target the intracranial tumor environment. To overcome such barriers, a number of chemotherapeutic agents and nucleic acid-based therapies are rapidly being synthesized and tested as new brain tumor-targeted delivery strategies. Novel carriers include liposomal and polymeric nanoparticles, wafers, microchips, microparticle-based nanoplatforms and cells-based vectors. Strong preclinical results suggest that these nanotechnologies are set to transform the therapeutic paradigm for brain tumor treatment. In addition to new tumoricidal agents, parallel work is also being conducted on the BBB front. Preclinical testing of chemical and physical modulation strategies is yielding improved intracranial concentrations. New diagnostic and therapeutic imaging techniques, such as high-intensity focused ultrasound and MRI-guided focused ultrasound, are being used to modulate the BBB in a more precise and non-invasive manner. This review details some of the tremendous advances that are being explored in current brain tumor targeted therapies, including local implant development, nanobiotechnology-based delivery strategies, and techniques of BBB manipulation.


Clinical & Developmental Immunology | 2016

Immune Checkpoint Modulators: An Emerging Antiglioma Armamentarium

Eileen S. Kim; Jennifer E. Kim; Mira A. Patel; Antonella Mangraviti; Jacob Ruzevick; Michael Lim

Immune checkpoints have come to the forefront of cancer therapies as a powerful and promising strategy to stimulate antitumor T cell activity. Results from recent preclinical and clinical studies demonstrate how checkpoint inhibition can be utilized to prevent tumor immune evasion and both local and systemic immune suppression. This review encompasses the key immune checkpoints that have been found to play a role in tumorigenesis and, more specifically, gliomagenesis. The review will provide an overview of the existing preclinical and clinical data, antitumor efficacy, and clinical applications for each checkpoint with respect to GBM, as well as a summary of combination therapies with chemotherapy and radiation.


Surgical Neurology International | 2015

Interstitial chemotherapy for malignant glioma: Future prospects in the era of multimodal therapy.

Antonella Mangraviti; Betty Tyler; Henry Brem

The advent of interstitial chemotherapy has significantly increased therapeutic options for patients with malignant glioma. Interstitial chemotherapy can deliver high concentrations of chemotherapeutic agents, directly at the site of the brain tumor while bypassing systemic toxicities. Gliadel, a locally implanted polymer that releases the alkylating agent carmustine, given alone and in combination with various other antitumor and resistance modifying therapies, has significantly increased the median survival for patients with malignant glioma. Convection enhanced delivery, a technique used to directly infuse drugs into brain tissue, has shown promise for the delivery of immunotoxins, monoclonal antibodies, and chemotherapeutic agents. Preclinical studies include delivery of chemotherapeutic and immunomodulating agents by polymer and microchips. Interstitial chemotherapy was shown to maximize local efficacy and is an important strategy for the efficacy of any multimodal approach.

Collaboration


Dive into the Antonella Mangraviti's collaboration.

Top Co-Authors

Avatar

Betty Tyler

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Henry Brem

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Liu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Lim

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Gullotti

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debebe Theodros

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge