Antonella Riccio
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonella Riccio.
Nature | 2008
Alexi Nott; P. Marc Watson; James D. Robinson; Luca Crepaldi; Antonella Riccio
Brain-derived neurotrophic factor (BDNF) and other neurotrophins have a vital role in the development of the rat and mouse nervous system by influencing the expression of many specific genes that promote differentiation, cell survival, synapse formation and, later, synaptic plasticity. Although nitric oxide (NO) is known to be an important mediator of BDNF signalling in neurons, the mechanisms by which neurotrophins influence gene expression during development and plasticity remain largely unknown. Here we show that BDNF triggers NO synthesis and S-nitrosylation of histone deacetylase 2 (HDAC2) in neurons, resulting in changes to histone modifications and gene activation. S-nitrosylation of HDAC2 occurs at Cys 262 and Cys 274 and does not affect deacetylase activity. In contrast, nitrosylation of HDAC2 induces its release from chromatin, which increases acetylation of histones surrounding neurotrophin-dependent gene promoters and promotes transcription. Notably, nitrosylation of HDAC2 in embryonic cortical neurons regulates dendritic growth and branching, possibly by the activation of CREB (cyclic-AMP-responsive-element-binding protein)-dependent genes. Thus, by stimulating NO production and S-nitrosylation of HDAC2, neurotrophic factors promote chromatin remodelling and the activation of genes that are associated with neuronal development.
Nature Neuroscience | 2010
Antonella Riccio
The development and function of neurons require the regulated expression of large numbers of very specific gene sets. Epigenetic modifications of both DNA and histone proteins are now emerging as fundamental mechanisms by which neurons adapt their transcriptional response to developmental and environmental cues. In the nervous system, the mechanisms by which extracellular signals regulate the activity of chromatin-modifying enzymes have just begun to be characterized. In this Review, I discuss how extracellular cues, including synaptic activity and neurotrophic factors, influence epigenetic modifications and regulate the neuronal transcriptional response. I also summarize additional mechanisms that induce chromatin remodeling events by combinatorial assembly of multiprotein complexes on neuronal gene promoters.
Nature Neuroscience | 2010
Catia Andreassi; Carola Zimmermann; Richard Mitter; Salvatore Fusco; Serena De Vita; Adolfo Saiardi; Antonella Riccio
mRNA localization is an evolutionary conserved mechanism that underlies the establishment of cellular polarity and specialized cell functions. To identify mRNAs localized in subcellular compartments of developing neurons, we took an original approach that combines compartmentalized cultures of rat sympathetic neurons and sequential analysis of gene expression (SAGE). Unexpectedly, the most abundant transcript in axons was mRNA for myo-inositol monophosphatase-1 (Impa1), a key enzyme that regulates the inositol cycle and the main target of lithium in neurons. A novel localization element within the 3′ untranslated region of Impa1 mRNA specifically targeted Impa1 transcript to sympathetic neuron axons and regulated local IMPA1 translation in response to nerve growth factor (NGF). Selective silencing of IMPA1 synthesis in axons decreased nuclear CREB activation and induced axonal degeneration. These results provide insights into mRNA transport in axons and reveal a new NGF-responsive localization element that directs the targeting and local translation of an axonal transcript.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Salvatore Fusco; Cristian Ripoli; Maria Vittoria Podda; Sofia Chiatamone Ranieri; Lucia Leone; Gabriele Toietta; Michael W. McBurney; Günther Schütz; Antonella Riccio; Claudio Grassi; Tommaso Galeotti; Giovambattista Pani
Calorie restriction delays brain senescence and prevents neurodegeneration, but critical regulators of these beneficial responses other than the NAD+-dependent histone deacetylase Sirtuin-1 (Sirt-1) are unknown. We report that effects of calorie restriction on neuronal plasticity, memory and social behavior are abolished in mice lacking cAMP responsive-element binding (CREB)-1 in the forebrain. Moreover, CREB deficiency drastically reduces the expression of Sirt-1 and the induction of genes relevant to neuronal metabolism and survival in the cortex and hippocampus of dietary-restricted animals. Biochemical studies reveal a complex interplay between CREB and Sirt-1: CREB directly regulates the transcription of the sirtuin in neuronal cells by binding to Sirt-1 chromatin; Sirt-1, in turn, is recruited by CREB to DNA and promotes CREB-dependent expression of target gene peroxisome proliferator-activated receptor-γ coactivator-1α and neuronal NO Synthase. Accordingly, expression of these CREB targets is markedly reduced in the brain of Sirt KO mice that are, like CREB-deficient mice, poorly responsive to calorie restriction. Thus, the above circuitry, modulated by nutrient availability, links energy metabolism with neurotrophin signaling, participates in brain adaptation to nutrient restriction, and is potentially relevant to accelerated brain aging by overnutrition and diabetes.
Cell Cycle | 2009
Alexi Nott; Antonella Riccio
Epigenetic changes of chromatin are increasingly recognized as key modifications that dictate the differentiation state of cells during the development. Within the central nervous system, extracellular cues induce chromatin remodelling events that are essential for neuronal progenitor proliferation, cell differentiation and, later, plasticity. In this review, we discuss recent studies that show how extracellular and intranuclear signals influence chromatin remodelling and neuron-specific gene expression. The gaseous molecule Nitric Oxide (NO) has recently emerged as a new key player that mediates the epigenetic changes associated with cell cycle arrest and differentiation in neurons. Histone deacetylases (HDACs) are the first identified intranuclear targets of NO, but, due to its highly diffusible nature, it is likely that many other nuclear factors are directly regulated by NO.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Adam Burton; Cristina Azevedo; Catia Andreassi; Antonella Riccio; Adolfo Saiardi
Significance Epigenetic modifications of chromatin are emerging as important regulatory mechanisms of many nuclear processes. Numerous proteins have been identified that mediate these modifications in a dynamic manner. However, less is known about the signaling pathways that transduce upstream signals into chromatin changes. Here, we show that the signaling molecule inositol pyrophosphate (IP7) synthesised by inositol hexakisphosphate kinase 1 plays a key role in regulating the association of one of these proteins, Jumonji domain containing 2C with chromatin, thereby controlling the levels of a number of crucial epigenetic modifications important to regulate gene expression. Epigenetic modifications of chromatin represent a fundamental mechanism by which eukaryotic cells adapt their transcriptional response to developmental and environmental cues. Although an increasing number of molecules have been linked to epigenetic changes, the intracellular pathways that lead to their activation/repression have just begun to be characterized. Here, we demonstrate that inositol hexakisphosphate kinase 1 (IP6K1), the enzyme responsible for the synthesis of the high-energy inositol pyrophosphates (IP7), is associated with chromatin and interacts with Jumonji domain containing 2C (JMJD2C), a recently identified histone lysine demethylase. Reducing IP6K1 levels by RNAi or using mouse embryonic fibroblasts derived from ip6k1−/− knockout mice results in a decreased IP7 concentration that epigenetically translates to reduced levels of trimethyl-histone H3 lysine 9 (H3K9me3) and increased levels of acetyl-H3K9. Conversely, expression of IP6K1 induces JMJD2C dissociation from chromatin and increases H3K9me3 levels, which depend on IP6K1 catalytic activity. Importantly, these effects lead to changes in JMJD2C-target gene transcription. Our findings demonstrate that inositol pyrophosphate signaling influences nuclear functions by regulating histone modifications.
Epigenetics | 2009
Luca Crepaldi; Antonella Riccio
Epigenetic changes are commonly considered stable modifications of the chromatin that define the differentiation state of cells during the development. Within the central nervous system however, chromatin is not static, but acts as a highly dynamic scaffold that supports the functional plasticity of fully differentiated, post-mitotic neurons. In the present review, we discuss relevant studies that have shown how specific chromatin remodeling events provide the basis to encode environmental stimuli and, consequently, express associated behavioral responses. This has been demonstrated for both physiological and pathological conditions, including cognition and drug addiction. Among chromatin modifications, histone acetylation appears to play a pivotal role in the regulation of behavior, making histone acetylases and deacetylases promising candidates for the pharmacological treatment of several neurological disorders.
PLOS Genetics | 2013
Luca Crepaldi; Cristina Policarpi; Alessandro Coatti; William T. Sherlock; Bart C. Jongbloets; Thomas A. Down; Antonella Riccio
In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes.
Science Signaling | 2010
Antonella Riccio
Extracellular stimuli can elicit alterations in gene transcription through regulation of histone deacetylases by sphingosine-1-phosphate. Gene expression in eukaryotes depends on epigenetic changes that occur on both histones and DNA. Class I histone deacetylases (HDACs) are enzymes that remove acetyl groups from histones and other nuclear proteins, thereby inducing chromatin condensation and transcriptional repression. HDACs belong to a large family of enzymes that undergo posttranslational modifications after the activation of several intracellular pathways. However, the environmental stimuli that change nuclear HDAC functions remain largely unknown. New evidence has demonstrated that the lipid sphingosine-1-phosphate (S1P) inhibits the activity of HDAC1 and HDAC2. Both S1P and sphingosine kinase 2 (SphK2), the enzyme that synthesizes S1P, are assembled in corepressor complexes containing HDAC1 and HDAC2. S1P is among the few endogenous HDAC inhibitors that is synthesized in the nucleus in response to extracellular stimulation, and the first nuclear lipid associated with an epigenetic modification. The discovery of endogenous molecules that regulate HDAC activity in vivo has implications for the development of new therapeutic approaches for a host of human diseases, including cancer and neurodegenerative disorders.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Alexi Nott; J. Nitarska; Jesse V. Veenvliet; S. Schacke; A.A.H.A. Derijck; P. Sirko; C. Muchardt; R.J. Pasterkamp; Marten P. Smidt; Antonella Riccio
Dynamic epigenetic modifications play a key role in mediating the expression of genes required for neuronal development. We previously identified nitric oxide (NO) as a signaling molecule that mediates S-nitrosylation of histone deacetylase 2 (HDAC2) and epigenetic changes in neurons. Here, we show that HDAC2 nitrosylation regulates neuronal radial migration during cortical development. Bead-array analysis performed in the developing cortex revealed that brahma (Brm), a subunit of the ATP-dependent chromatin-remodeling complex BRG/brahma-associated factor, is one of the genes regulated by S-nitrosylation of HDAC2. In the cortex, expression of a mutant form of HDAC2 that cannot be nitrosylated dramatically inhibits Brm expression. Our study identifies NO and HDAC2 nitrosylation as part of a signaling pathway that regulates cortical development and the expression of Brm in neurons.