Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonello De Martino is active.

Publication


Featured researches published by Antonello De Martino.


Optics Letters | 2003

Optimized Mueller polarimeter with liquid crystals

Antonello De Martino; Yong-Ki Kim; Enric Garcia-Caurel; Blandine Laude; Bernard Drevillon

We demonstrate a Mueller polarimeter in which the polarization-state generator and analyzer are both composed of a linear polarizer and two liquid-crystal variable retarders. The polarimeter is designed to optimize the accuracy of the final results by minimization of the condition numbers of the modulation and analysis matrices. The polarimeter calibration, a difficult task by conventional procedures, is achieved easily by use of the eigenvalue method of Compain et al. [Appl. Opt. 38, 3490 (1999)]. The overall polarimeter performance is tested with a linear polarizer at various angles and a compensator at various retardations.


Optics Express | 2011

Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging

Angelo Pierangelo; Abdelali Benali; Maria-Rosaria Antonelli; Tatiana Novikova; Pierre Validire; Brice Gayet; Antonello De Martino

Cancerous and healthy human colon samples have been analyzed ex-vivo using a multispectral imaging Mueller polarimeter operated in the visible (from 500 to 700 nm) in a backscattering configuration with diffuse light illumination. Three samples of Liberkühn colon adenocarcinomas have been studied: common, mucinous and treated by radiochemotherapy. For each sample, several specific zones have been chosen, based on their visual staging and polarimetric responses, which have been correlated to the histology of the corresponding cuts. The most relevant polarimetric images are those quantifying the depolarization for incident linearly polarized light. The measured depolarization depends on several factors, namely the presence or absence of tumor, its exophytic (budding) or endophytic (penetrating) nature, its thickness (its degree of ulceration) and its level of penetration in deeper layers (submucosa, muscularis externa and serosa). The cellular density, the concentration of stroma, the presence or absence of mucus and the light penetration depth, which increases with wavelength, are also relevant parameters. Our data indicate that the tissues with the lowest and highest depolarizing powers are respectively mucus-free tumoral tissue with high cellular density and healthy serosa, while healthy submucosa, muscularis externa as well as mucinous tumor probably feature intermediate values. Moreover, the specimen coming from a patient treated successfully with radiochemotherapy exhibited a uniform polarimetric response typical of healthy tissue even in the initially pathological zone. These results demonstrate that multi-spectral Mueller imaging can provide useful contrasts to quickly stage human colon cancer ex-vivo and to distinguish between different histological variants of tumor.


Applied Optics | 2004

Mueller polarimetric imaging system with liquid crystals.

Blandine Laude-Boulesteix; Antonello De Martino; Bernard Drevillon; Laurent Schwartz

We present a new polarimetric imaging system based on liquid-crystal modulators, a spectrally filtered white-light source, and a CCD camera. The whole Mueller matrix image of the sample is measured in approximately 5 s in the transmission mode. The instrument design, together with an original and easy-to-operate calibration procedure, provides high accuracy over a wide spectral range (500-700 nm). This accuracy has been assessed by measurement of a linear polarizer at different orientations and a thick wedged quartz plate as an example of a partially depolarized retarder. Polarimetric images of a stained hepatic biopsy with significant fibrosis have been taken at several wavelengths. The optical properties of Picrosirius Red stained collagen (diattenuation, retardance, and polarizance) have been measured independently from each other between 500 and 700 nm.


Journal of Nanoparticle Research | 2009

Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

Maria Losurdo; Michael Bergmair; Giovanni Bruno; Denis Cattelan; Christoph Cobet; Antonello De Martino; K. Fleischer; Z. Dohčević-Mitrović; N. Esser; Melanie Galliet; Radoš Gajić; Dušan Hemzal; Kurt Hingerl; Josef Humlíček; Razvigor Ossikovski; Zoran V. Popović; Ottilia Saxl

This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures.


Optics Letters | 2007

Forward and reverse product decompositions of depolarizing Mueller matrices

Razvigor Ossikovski; Antonello De Martino; Steve Guyot

Because of the noncommutativity of the matrix product, the three factors into which a depolarizing Mueller matrix is decomposed, i.e., the diattenuator, the retarder, and the depolarizer, form six possible products grouped into two families, as already pointed out [J. Opt. Soc. Am. A13, 1106 (1996); Opt. Lett.29, 2234 (2004)]. We show that, apart from the generalized polar decomposition generating the first family of products, there exists a dual decomposition belonging to the second family. The mathematical procedure for this dual decomposition is given, and the symmetry existing between the two decompositions is pointed out. The choice of the most appropriate decomposition for a given practical optical arrangement is likewise discussed and illustrated by simple examples.


Optics Express | 2013

Polarimetric imaging of uterine cervix: a case study

Angelo Pierangelo; André Nazac; Abdelali Benali; Pierre Validire; Henri Cohen; Tatiana Novikova; Bicher Haj Ibrahim; Sandeep Manhas; Clément Fallet; Maria Rosaria Antonelli; Antonello De Martino

We present a preliminary investigation of macroscopic polarimetric imaging of uterine cervix. Orthogonal state contrast (OSC) images of healthy and anomalous cervices have been taken in vivo at 550 nm. Four ex vivo cervix samples have been studied in full Muller polarimetry, at 550 nm and 700 nm, and characterized in detail by standard pathology. One sample was totally healthy, another one carried CIN lesions at very early stage (CIN1) in its visible exocervical region, while for the other two samples more advanced (CIN3) lesions were present, together with visible glandular epithelium (ectropion). Significant birefringence has been observed in the healthy regions of all six samples, both in vivo and ex vivo. Standard treatments of the Mueller images of the ex vivo samples allowed to quantify both retardation and depolarization. Retardation reached 60° in healthy regions, and disappeared in the anomalous regions of the other three ex vivo samples. The depolarization power was largest in healthy regions, and lower in CINs and ectropion. Possible origins of the observed effects are briefly discussed.


Applied Optics | 2002

Full-field optical coherence tomography with thermal light

Blandine Laude; Antonello De Martino; Bernard Drevillon; Laurence Benattar; Laurent Schwartz

A simple optical coherence tomography system has been developed based on a white-light Linnik interferometric microscope with its reference mirror mounted on a piezoelectric translator. The geometrical extension of the optics allows efficient illumination of this device with a low-power (3-W) light bulb, yielding full-field interferometric images at 50 Hz with a fast CCD camera. Owing to the very broad spectral width of the light source and of the camera response, we achieved axial resolutions equal to 1.1 microm in free space and 0.7 microm through a standard microscope cover plate. Tomographic images of an epithelial cell smear and of an hematological sample are shown.


Applied Optics | 2006

Application of Mueller polarimetry in conical diffraction for critical dimension measurements in microelectronics.

Tatiana Novikova; Antonello De Martino; Sami Ben Hatit; Bernard Drevillon

Fast and efficient metrology tools are required in microelectronics for control of ever-decreasing feature sizes. Optical techniques such as spectroscopic ellipsometry (SE) and normal incidence reflectometry are widely used for this task. In this work we investigate the potential of spectral Mueller polarimetry in conical diffraction for the characterization of 1D gratings, with particular emphasis on small critical dimensions (CDs). Mueller matrix spectra were taken in the visible (450-700 nm) wavelength range on a photoresist grating on a Si substrate with 70/240 nm CD/period nominal values, set at nine different azimuthal angles. These spectra were fitted with a rigorous coupled-wave analysis (RCWA) algorithm by using different models for the grating profile (rectangular and trapezoidal, with or without rounded corners). A detailed study of the stability and consistency of the optimal CD values, together with the variation of the merit function (the mean square deviation D2) around these values, clearly showed that for a given wavelength range, this technique can decouple some critical parameters (e.g., top and bottom CDs, left and right sidewall projections) much more efficiently than the usual SE.


Journal of Biomedical Optics | 2013

Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas

Angelo Pierangelo; Sandeep Manhas; Abdelali Benali; Clément Fallet; Jean-Laurent Totobenazara; Maria Rosaria Antonelli; Tatiana Novikova; Brice Gayet; Antonello De Martino; Pierre Validire

Abstract. This work is devoted to a first exploration of Mueller polarimetric imaging for the detection of residual cancer after neoadjuvant treatment for the rectum. Three samples of colorectal carcinomas treated by radiochemotherapy together with one untreated sample are analyzed ex vivo before fixation in formalin by using a multispectral Mueller polarimetric imaging system operated from 500 to 700 nm. The Mueller images, analyzed using the Lu-Chipmann decomposition, show negligible diattenuation and retardation. The nonirradiated rectum exhibits a variation of depolarization with cancer evolution stage. At all wavelengths on irradiated samples, the contrast between the footprint of the initial tumor and surrounding healthy tissue is found to be much smaller for complete tumor regression than when a residual tumor is present, even at volume fractions of the order of 5%. This high sensitivity is attributed to the modification of stromal collagen induced by the cancer. The depolarization contrast between treated cancer and healthy tissue is found to increase monotonously with the volume fraction of residual cancer in the red part of the spectrum. Polarimetric imaging is a promising technique for detecting short-time small residual cancers, which is valuable information for pathological diagnosis and patient management by clinicians.


Optics Express | 2007

Metrology of replicated diffractive optics with Mueller polarimetry in conical diffraction

Tatiana Novikova; Antonello De Martino; Pavel Bulkin; Quang Nguyen; B. Drévillon; V. Popov; Alexander Chumakov

The feasibility of metrological characterization of the one-dimensional (1D) holographic gratings, used in the nanoimprint molding tool fabrication step, by spectroscopic Mueller polarimetry in conical diffraction is investigated. The studied samples correspond to two different steps of the replicated diffraction grating fabrication process. We characterized master gratings that consist of patterned resist layer on chromium-covered glass substrate and complementary (replica) gratings made of nickel. The profiles of the gratings obtained by fitting the experimental spectra of Mueller matrix coefficients taken at different azimuthal angles were confirmed by atomic force microscopy (AFM) measurements. The calculated profiles of corresponding master and replica gratings are found to be complementary. We conclude that the Mueller polarimetry, as a fast and non-contact optical characterization technique, can provide the basis for the metrology of the molding tool fabrication step in the nanoimprint technique.

Collaboration


Dive into the Antonello De Martino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdelali Benali

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Bernard Drevillon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge