Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonello Lorenzini is active.

Publication


Featured researches published by Antonello Lorenzini.


Mechanisms of Ageing and Development | 2004

Replicative senescence: a critical review

Vincent J. Cristofalo; Antonello Lorenzini; Robert G. Allen; Claudio Torres; Maria Tresini

Human cells in culture have a limited proliferative capacity. After a period of vigorous proliferation, the rate of cell division declines and a number of changes occur in the cells including increases in size, in secondary lysosomes and residual bodies, nuclear changes and a number of changes in gene expression which provide biomarkers for senescence. Although human cells in culture have been used for over 40 years as models for understanding the cellular basis of aging, the relationship of replicative senescence to aging of the organism is still not clear. In this review, we discuss replicative senescence in the light of current information on signal transduction and mitogenesis, cell stress, apoptosis, telomere changes and finally we discuss replicative senescence as a model of aging in vivo.


PLOS ONE | 2010

Long-Term IGF-I Exposure Decreases Autophagy and Cell Viability

Alessandro Bitto; Chad A. Lerner; Claudio Torres; Michaela Roell; Marco Malaguti; Viviana I. Pérez; Antonello Lorenzini; Silvana Hrelia; Yuji Ikeno; Michelle E. Matzko; Roger McCarter; Christian Sell

A reduction in IGF-I signaling has been found to increase lifespan in multiple organisms despite the fact that IGF-I is a trophic factor for many cell types and has been found to have protective effects against multiple forms of damage in acute settings. The increase in longevity seen in response to reduced IGF-I signaling suggests that there may be differences between the acute and chronic impact of IGF-I signaling. We have examined the possibility that long-term stimulation with IGF-I may have a negative impact at the cellular level using quiescent human fibroblasts. We find that fibroblast cells exposed to IGF-I for 14 days have reduced long-term viability as judged by colony forming assays, which is accompanied by an accumulation of senescent cells. In addition we observe an accumulation of cells with depolarized mitochondria and a reduction in autophagy in the long-term IGF-I treated cultures. An examination of mice with reduced IGF-I levels reveals evidence of enhanced autophagy and fibroblast cells derived from these mice have a larger mitochondrial mass relative to controls indicating that changes in mitochondrial turnover occurs in animals with reduced IGF-I. The results indicate that chronic IGF-I stimulation leads to mitochondrial dysfunction and reduced cell viability.


Experimental Cell Research | 2010

Stress-induced senescence in human and rodent astrocytes.

Alessandro Bitto; Christian Sell; Elizabeth Crowe; Antonello Lorenzini; Marco Malaguti; Silvana Hrelia; Claudio Torres

There is an increasing awareness that astrocytes, the most abundant cell type in the central nervous system, are critical mediators of brain homeostasis, playing multifunctional roles including buffering potassium ions, maintaining the blood-brain barrier, releasing growth factors, and regulating neurotransmitter levels. Defects in astrocyte function have been implicated in a variety of diseases including age-related diseases such Alzheimers disease and Parkinsons disease. However, little is known about the age-related changes that occur in astrocytes and if these cells are able to generate a senescent phenotype in response to stress. In this report we have examined whether astrocytes can initiate a senescence program similar to that described in other cell types in response to a variety of stresses. Our results indicate that after oxidative stress, proteasome inhibition, or exhausted replication, human and mouse astrocytes show changes in several established markers of cellular senescence. Astrocytes appear to be more sensitive to oxidative stress than fibroblasts, suggesting that stress-induced senescence may be more pronounced in the brain than in other tissues.


Mechanisms of Ageing and Development | 2005

Cellular replicative capacity correlates primarily with species body mass not longevity

Antonello Lorenzini; Maria Tresini; Steven N. Austad; Vincent J. Cristofalo

Although the limited replicative capacity of human fibroblasts in culture is frequently used as a model for aging, a question of major interest is whether the relationship between in vitro fibroblast proliferative capacity and species longevity is primary or secondary to a relationship with species body size. In this report we establish that body mass is the primary correlative of proliferative potential rather than species life-span.


American Journal of Physiology-heart and Circulatory Physiology | 2011

H2O2 preconditioning modulates phase II enzymes through p38 MAPK and PI3K/Akt activation.

Cristina Angeloni; Elisa Motori; Daniele Fabbri; Marco Malaguti; Emanuela Leoncini; Antonello Lorenzini; Silvana Hrelia

Ischemic preconditioning is a complex cardioprotective phenomenon that involves adaptive changes in cells and molecules and occurs in a biphasic pattern: an early phase after 1-2 h and a late phase after 12-24 h. While it is widely accepted that reactive oxygen species are strongly involved in triggering ischemic preconditiong, it is not clear if they play a major role in the early or late phase of preconditioning and which are the mechanisms involved. The present study was designed to investigate the mechanisms behind H(2)O(2)-induced cardioprotection in rat neonatal cardiomyocytes. We focused on antioxidant and phase II enzymes and their modulation by protein kinase signaling pathways and nuclear-factor-E(2)-related factor-1 (Nrf1) and Nrf2. H(2)O(2) preconditioning was able to counteract oxidative stress more effectively in the late than in the early phase of adaptation. In particular, H(2)O(2) preconditioning counteracted oxidative stress-induced apoptosis by decreasing caspase-3 activity, increasing Bcl2 expression and selectively increasing the expression and activity of antioxidant and phase II enzymes through Nrf1 and Nrf2 translocation to the nucleus. The downregulation of Nrf1 and Nrf2 by small interfering RNA reduced the expression level of phase II enzymes. Specific inhibitors of phosphatidylinositol 3-kinase/Akt and p38 MAPK activation partially reduced the cardioprotection elicited by H(2)O(2) preconditioning and the induction and activity of phase II enzymes. These findings demonstrate, for the first time, a key role for Nrf1, and not only for Nrf2, in the induction of phase II enzymes triggered by H(2)O(2) preconditioning.


Journal of Biological Chemistry | 2006

Modulation of Replicative Senescence of Diploid Human Cells by Nuclear ERK Signaling

Maria Tresini; Antonello Lorenzini; Claudio Torres; Vincent J. Cristofalo

Normal somatic cells have a limited replicative lifespan, and serial subcultivation ultimately results in senescence. Senescent cells are irreversibly growth-arrested and show impaired responses to mitogens. Activation of the ERK signaling pathway, an absolute requirement for cell proliferation, results in nuclear relocalization of active ERKs, an event impaired in senescent fibroblasts. This impairment coincides with increased activity of the nuclear ERK phosphatase MKP2. Here we show that replicative lifespan can be altered by changes in nuclear ERK activity. Ectopic expression of MKP2 results in premature senescence. In contrast, knock-down of MKP2 expression, through transduction of MKP2 sequence-specific short hairpin RNA, or expression of the phosphatase resistant ERK2(D319N) mutant, abrogates the effects of increased endogenous MKP2 levels and senescence is postponed. Nuclear targeting of ERK2(D319N) significantly augments its effects and the transduced cultures show higher than 60% increase in replicative lifespan compared with cultures transduced with wt ERK2. Long-lived cultures senesce with altered molecular characteristics and retain the ability to express c-fos, and Rb is maintained in its inactive form. Our results support that MKP2-mediated inactivation of nuclear ERK2 represents a key event in the establishment of replicative senescence. Although it is evident that senescence can be imposed through multiple mechanisms, restoration of nuclear ERK activity can bypass a critical senescence checkpoint and, thus, extend replicative lifespan.


Experimental Cell Research | 2003

Metabolic stabilization of MAP kinase phosphatase-2 in senescence of human fibroblasts.

Claudio Torres; Mary Kay Francis; Antonello Lorenzini; Maria Tresini; Vincent J. Cristofalo

Cellular senescence is characterized by impaired cell proliferation. We have previously shown that, relative to the young counterpart, senescent WI-38 human fibroblasts display a decreased abundance of active phosphorylated ERK (p-ERK) in the nucleus. We have tested the hypothesis that this is due to elevated levels of nuclear MAP kinase phosphatase (MKP) activity in senescent cells. Our results indicate that the activity and abundance of MKP-2 is increased in senescent fibroblasts, compared to their young counterparts. Further analysis indicates that it is MKP-2 protein, but not MKP-2 mRNA level, that is increased in senescent cells. This increase is the result of the increased stability of MKP-2 protein against proteolytic degradation. The degradation of MKPs was impaired by proteasome inhibitors both in young and old WI-38 cells, indicating that proteasome activity is involved in the degradation of MKPs. Finally, our results indicate that proteasome activity, in general, is diminished in senescent fibroblasts. Taken together, these data indicate that the increased level and activity of MKP-2 in senescent WI-38 cells are the consequence of impaired proteosomal degradation, and this increase is likely to play a significant role in the decreased levels of p-ERK in the nucleus of senescent cells.


Prostaglandins Leukotrienes and Essential Fatty Acids | 1998

Dual influence of aging and vitamin B6 deficiency on delta-6-desaturation of essential fatty acids in rat liver microsomes.

Andreina Bordoni; S. Hrelia; Antonello Lorenzini; R Bergami; L Cabrini; Pierluigi Biagi; B Tolomelli

Delta-6-desaturase (D6D) activity is influenced by many nutritional and non-nutritional factors, among which one of the most important is aging. D6D activity could be susceptible to the dual influence of aging itself and of nutritional deficiencies, due to the reduced intake and/or absorption of essential nutrients. Particularly, vitamin B6 deficiency might be a crucial factor for D6D activity in aged people. Using 20 month old Sprague-Dawley rats fed a diet with a subnormal level of vitamin B6, we evaluated D6D activity for linoleic acid (LA) and alpha-linolenic acid (ALA) in liver microsomes, and the fatty acid composition of microsomal total lipids. We observed a diminished D6D activity for LA and also for ALA in vitamin B6-deficient animals, being approximately 63% and 81% respectively of the corresponding activity in control rats. As a consequence, significant modifications in the relative molar content of microsomal fatty acids were observed. The content of arachidonic and docosahexaenoic acid, the main products of the conversion of LA and ALA respectively, decreased, LA content increased and a decrease in the unsaturation index was observed in liver microsomes of B6-deficient rats. The foregoing results suggest that the impairment of D6D activity by vitamin B6 deficiency might be an important factor in decreasing the synthesis of n-6 and n-3 PUFAs. This may be particularly important in aging, where D6D activity is already impaired.


Experimental Gerontology | 2002

Role of the Raf/MEK/ERK and the PI3K/Akt(PKB) pathways in fibroblast senescence

Antonello Lorenzini; Maria Tresini; Madhu Mawal-Dewan; Lorenza Frisoni; Hong Zhang; Robert G. Allen; Christian Sell; Vincent J. Cristofalo

Replicative senescence is characterized by numerous phenotypic alterations including loss of proliferative capacity and numerous changes in gene expression such as impaired serum inducibility of the immediate early gene c-fos and increased expression of collagenase. Transcription of c-fos in response to mitogens depends on the activation of a multiprotein complex formed on the c-fos serum response element (SRE), which includes the transcription factors serum response factor (SRF) and ternary complex factor (TCF). TCF is activated after phosphorylation by the Extracellular signals Regulated Kinase 1 and 2 (ERK1/2), two kinases of the Raf/MEK/ERK signaling pathway. We have previously demonstrated that collagenase expression is under positive regulation by the transcription factor FKHRL1 and that this transcription factor is under negative regulation by the phosphatidylinositol 3-kinase(PI3K)/Akt(PKB) pathway. Although total activity of ERK and Akt was similar in total cell lysates from early and late passage fibroblasts our data indicate that in senescent cells neither ERK nor Akt are able to phosphorylate efficiently their nuclear targets. Our findings suggest that although they can be fully activated in the cytosol of both early and late passage cells, the Raf/MEK/ERK and the PI3K/Akt pathways, which are essential for cellular proliferation, are down regulated in the nuclei of senescent cells.


Mechanisms of Ageing and Development | 2009

Significant correlation of species longevity with DNA double strand break recognition but not with telomere length.

Antonello Lorenzini; F. Brad Johnson; Anthony Oliver; Maria Tresini; Jasmine S. Smith; Mona Hdeib; Christian Sell; Vincent J. Cristofalo; Thomas D. Stamato

The identification of the cellular mechanisms responsible for the wide differences in species lifespan remains one of the major unsolved problems of the biology of aging. We measured the capacity of nuclear protein to recognize DNA double strand breaks (DSBs) and telomere length of skin fibroblasts derived from mammalian species that exhibit wide differences in longevity. Our results indicate DNA DSB recognition increases exponentially with longevity. Further, an analysis of the level of Ku80 protein in human, cow, and mouse suggests that Ku levels vary dramatically between species and these levels are strongly correlated with longevity. In contrast mean telomere length appears to decrease with increasing longevity of the species, although not significantly. These findings suggest that an enhanced ability to bind to DNA ends may be important for longevity. A number of possible roles for increased levels of Ku and DNA-PKcs are discussed.

Collaboration


Dive into the Antonello Lorenzini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent J. Cristofalo

Lankenau Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Tresini

Lankenau Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Hrelia

University of Bologna

View shared research outputs
Top Co-Authors

Avatar

Thomas D. Stamato

Lankenau Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge