Antoni Buades
Paris Descartes University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antoni Buades.
computer vision and pattern recognition | 2005
Antoni Buades; Bartomeu Coll; Jean-Michel Morel
We propose a new measure, the method noise, to evaluate and compare the performance of digital image denoising methods. We first compute and analyze this method noise for a wide class of denoising algorithms, namely the local smoothing filters. Second, we propose a new algorithm, the nonlocal means (NL-means), based on a nonlocal averaging of all pixels in the image. Finally, we present some experiments comparing the NL-means algorithm and the local smoothing filters.
International Journal of Computer Vision | 2008
Antoni Buades; Bartomeu Coll; Jean-Michel Morel
Abstract Neighborhood filters are nonlocal image and movie filters which reduce the noise by averaging similar pixels. The first object of the paper is to present a unified theory of these filters and reliable criteria to compare them to other filter classes. A CCD noise model will be presented justifying the involvement of neighborhood filters. A classification of neighborhood filters will be proposed, including classical image and movie denoising methods and discussing further a recently introduced neighborhood filter, NL-means. In order to compare denoising methods three principles will be discussed. The first principle, “method noise”, specifies that only noise must be removed from an image. A second principle will be introduced, “noise to noise”, according to which a denoising method must transform a white noise into a white noise. Contrarily to “method noise”, this principle, which characterizes artifact-free methods, eliminates any subjectivity and can be checked by mathematical arguments and Fourier analysis. “Noise to noise” will be proven to rule out most denoising methods, with the exception of neighborhood filters. This is why a third and new comparison principle, the “statistical optimality”, is needed and will be introduced to compare the performance of all neighborhood filters. The three principles will be applied to compare ten different image and movie denoising methods. It will be first shown that only wavelet thresholding methods and NL-means give an acceptable method noise. Second, that neighborhood filters are the only ones to satisfy the “noise to noise” principle. Third, that among them NL-means is closest to statistical optimality. A particular attention will be paid to the application of the statistical optimality criterion for movie denoising methods. It will be pointed out that current movie denoising methods are motion compensated neighborhood filters. This amounts to say that they are neighborhood filters and that the ideal neighborhood of a pixel is its trajectory. Unfortunately the aperture problem makes it impossible to estimate ground true trajectories. It will be demonstrated that computing trajectories and restricting the neighborhood to them is harmful for denoising purposes and that space-time NL-means preserves more movie details.
Siam Review | 2010
Antoni Buades; Bartomeu Coll; Jean-Michel Morel
The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding performance when the image model corresponds to the algorithm assumptions but fail in general and create artifacts or remove fine structures in images. The main focus of this paper is, first, to define a general mathematical and experimental methodology to compare and classify classical image denoising algorithms and, second, to propose a nonlocal means (NL-means) algorithm addressing the preservation of structure in a digital image. The mathematical analysis is based on the analysis of the “method noise,” defined as the difference between a digital image and its denoised version. The NL-means algorithm is proven to be asymptotically optimal under a generic statistical image model. The denoising performance of all considered methods is compared in four ways; mathematical: asymptotic order of magnitude of the method noise under regularity assumptions; perceptual-mathematical: the algorithms artifacts and their explanation as a violation of the image model; quantitative experimental: by tables of
advanced video and signal based surveillance | 2005
Antoni Buades; Bartomeu Coll; Jean-Michel Morel
L^2
IEEE Transactions on Image Processing | 2010
Antoni Buades; Triet M. Le; Jean-Michel Morel; Luminita A. Vese
distances of the denoised version to the original image. The fourth and perhaps most powerful evaluation method is, however, the visualization of the method noise on natural images. The more this method noise looks like a real white noise, the better the method.
Numerische Mathematik | 2006
Antoni Buades; Bartomeu Coll; Jean-Michel Morel
State of the art movie restoration methods either estimate motion and filter out the trajectories, or compensate the motion by an optical flow estimate and then filter out the compensated movie. Now, the motion estimation problem is ill posed. This fact is known as the aperture problem: trajectories are ambiguous since they could coincide with any promenade in the space-time isophote surface. In this paper, we try to show that, for denoising, the aperture problem can be taken advantage of. Indeed, by the aperture problem, many pixels in the neighboring frames are similar to the current pixel one wishes to denoise. Thus, denoising by an averaging process can use many more pixels than just the ones on a single trajectory. This observation leads to use for movies a recently introduced image denoising method, the NL-means algorithm. This static 3D algorithm outperforms motion compensated algorithms, as it does not lose movie details. It involves the whole movie isophote and not just a trajectory.
IEEE Transactions on Image Processing | 2009
Antoni Buades; Bartomeu Coll; Jean-Michel Morel; Catalina Sbert
Can images be decomposed into the sum of a geometric part and a textural part? In a theoretical breakthrough, [Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. Providence, RI: American Mathematical Society, 2001] proposed variational models that force the geometric part into the space of functions with bounded variation, and the textural part into a space of oscillatory distributions. Meyers models are simple minimization problems extending the famous total variation model. However, their numerical solution has proved challenging. It is the object of a literature rich in variants and numerical attempts. This paper starts with the linear model, which reduces to a low-pass/high-pass filter pair. A simple conversion of the linear filter pair into a nonlinear filter pair involving the total variation is introduced. This new-proposed nonlinear filter pair retains both the essential features of Meyers models and the simplicity and rapidity of the linear model. It depends upon only one transparent parameter: the texture scale, measured in pixel mesh. Comparative experiments show a better and faster separation of cartoon from texture. One application is illustrated: edge detection.
Journal of Electronic Imaging | 2011
Lei Zhang; Xiaolin Wu; Antoni Buades; Xin Li
Denoising images can be achieved by a spatial averaging of nearby pixels. However, although this method removes noise it creates blur. Hence, neighborhood filters are usually preferred. These filters perform an average of neighboring pixels, but only under the condition that their grey level is close enough to the one of the pixel in restoration. This very popular method unfortunately creates shocks and staircasing effects. In this paper, we perform an asymptotic analysis of neighborhood filters as the size of the neighborhood shrinks to zero. We prove that these filters are asymptotically equivalent to the Perona–Malik equation, one of the first nonlinear PDE’s proposed for image restoration. As a solution, we propose an extremely simple variant of the neighborhood filter using a linear regression instead of an average. By analyzing its subjacent PDE, we prove that this variant does not create shocks: it is actually related to the mean curvature motion. We extend the study to more general local polynomial estimates of the image in a grey level neighborhood and introduce two new fourth order evolution equations.
Acta Numerica | 2012
Marc Lebrun; Miguel Colom; Antoni Buades; Jean-Michel Morel
Demosaicking is the process by which from a matrix of colored pixels measuring only one color component per pixel, red, green, or blue, one can infer a whole color information at each pixel. This inference requires a deep understanding of the interaction between colors, and the involvement of image local geometry. Although quite successful in making such inferences with very small relative error, state-of-the-art demosaicking methods fail when the local geometry cannot be inferred from the neighboring pixels. In such a case, which occurs when thin structures or fine periodic patterns were present in the original, state-of-the-art methods can create disturbing artifacts, known as zipper effect, blur, and color spots. The aim of this paper is to show that these artifacts can be avoided by involving the image self-similarity to infer missing colors. Detailed experiments show that a satisfactory solution can be found, even for the most critical cases. Extensive comparisons with state-of-the-art algorithms will be performed on two different classic image databases.
Siam Journal on Imaging Sciences | 2013
Marc Lebrun; Antoni Buades; Jean-Michel Morel
Single sensor digital color cameras capture only one of the three primary colors at each pixel and a process called color demosaicking (CDM) is used to reconstruct the full color images. Most CDM algorithms assume the existence of high local spectral redundancy in estimating the missing color samples. However, for images with sharp color transitions and high color saturation, such an assumption may be invalid and visually unpleasant CDM errors will occur. In this paper, we exploit the image nonlocal redundancy to improve the local color reproduction result. First, multiple local direc- tional estimates of a missing color sample are computed and fused according to local gradients. Then, nonlocal pixels similar to the esti- mated pixel are searched to enhance the local estimate. An adaptive thresholding method rather than the commonly used nonlocal means filtering is proposed to improve the local estimate. This allows the final reconstruction to be performed at the structural level as op- posed to the pixel level. Experimental results demonstrate that the proposed local directional interpolation and nonlocal adaptive thresh- olding method outperforms many state-of-the-art CDM methods in reconstructing the edges and reducing color interpolation artifacts, leading to higher visual quality of reproduced color images.