Antoni Hernández-Fernández
Polytechnic University of Catalonia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antoni Hernández-Fernández.
Cognitive Science | 2013
Ramon Ferrer-i-Cancho; Antoni Hernández-Fernández; David Lusseau; Govindasamy Agoramoorthy; Minna J. Hsu; Stuart Semple
A key aim in biology and psychology is to identify fundamental principles underpinning the behavior of animals, including humans. Analyses of human language and the behavior of a range of non-human animal species have provided evidence for a common pattern underlying diverse behavioral phenomena: Words follow Zipfs law of brevity (the tendency of more frequently used words to be shorter), and conformity to this general pattern has been seen in the behavior of a number of other animals. It has been argued that the presence of this law is a sign of efficient coding in the information theoretic sense. However, no strong direct connection has been demonstrated between the law and compression, the information theoretic principle of minimizing the expected length of a code. Here, we show that minimizing the expected code length implies that the length of a word cannot increase as its frequency increases. Furthermore, we show that the mean code length or duration is significantly small in human language, and also in the behavior of other species in all cases where agreement with the law of brevity has been found. We argue that compression is a general principle of animal behavior that reflects selection for efficiency of coding.
Complexity | 2013
Ramon Ferrer-i-Cancho; Nuria Forns; Antoni Hernández-Fernández; Gemma Bel-Enguix; Jaume Baixeries
The importance of statistical patterns of language has been debated over decades. Although Zipfs law is perhaps the most popular case, recently, Menzeraths law has begun to be involved. Menzeraths law manifests in language, music and genomes as a tendency of the mean size of the parts to decrease as the number of parts increases in many situations. This statistical regularity emerges also in the context of genomes, for instance, as a tendency of species with more chromosomes to have a smaller mean chromosome size. It has been argued that the instantiation of this law in genomes is not indicative of any parallel between language and genomes because (a) the law is inevitable and (b) non-coding DNA dominates genomes. Here mathematical, statistical and conceptual challenges of these criticisms are discussed. Two major conclusions are drawn: the law is not inevitable and languages also have a correlate of non-coding DNA. However, the wide range of manifestations of the law in and outside genomes suggests that the striking similarities between non-coding DNA and certain linguistics units could be anecdotal for understanding the recurrence of that statistical law.
Entropy | 2011
Antoni Hernández-Fernández; Jaume Baixeries; Nuria Forns; Ramon Ferrer-i-Cancho
It is known that chromosome number tends to decrease as genome size increases in angiosperm plants. Here the relationship between number of parts (the chromosomes) and size of the whole (the genome) is studied for other groups of organisms from different kingdoms. Two major results are obtained. First, the finding of relationships of the kind “the more parts the smaller the whole” as in angiosperms, but also relationships of the kind “the more parts the larger the whole”. Second, these dependencies are not linear in general. The implications of the dependencies between genome size and chromosome number are two-fold. First, they indicate that arguments against the relevance of the finding of negative correlations consistent with Menzerath-Altmann law (a linguistic law that relates the size of the parts with the size of the whole) in genomes are seriously flawed. Second, they unravel the weakness of a recent model of chromosome lengths based upon random breakage that assumes that chromosome number and genome size are independent.
BioSystems | 2012
Jaume Baixeries; Antoni Hernández-Fernández; Ramon Ferrer-i-Cancho
Recently, a random breakage model has been proposed to explain the negative correlation between mean chromosome length and chromosome number that is found in many groups of species and is consistent with Menzerath-Altmann law, a statistical law that defines the dependency between the mean size of the whole and the number of parts in quantitative linguistics. Here, the central assumption of the model, namely that genome size is independent from chromosome number is reviewed. This assumption is shown to be unrealistic from the perspective of chromosome structure and the statistical analysis of real genomes. A general class of random models, including that random breakage model, is analyzed. For any model within this class, a power law with an exponent of -1 is predicted for the expectation of the mean chromosome size as a function of chromosome length, a functional dependency that is not supported by real genomes. The random breakage and variants keeping genome size and chromosome number independent raise no serious objection to the relevance of correlations consistent with Menzerath-Altmann law across taxonomic groups and the possibility of a connection between human language and genomes through that law.
arXiv: Neurons and Cognition | 2013
Ramon Ferrer-i-Cancho; Antoni Hernández-Fernández
Abstract Parallels of Zipf’s law of brevity, the tendency of more frequent words to be shorter, have been found in bottlenose dolphins and Formosan macaques. Although these findings suggest that behavioral repertoires are shaped by a general principle of compression, common marmosets and golden-backed uakaris do not exhibit the law. However, we argue that the law may be impossible or difficult to detect statistically in a given species if the repertoire is too small, a problem that could be affecting golden backed uakaris, and show that the law is present in a subset of the repertoire of common marmosets. We suggest that the visibility of the law will depend on the subset of the repertoire under consideration or the repertoire size.
Journal of Quantitative Linguistics | 2013
Jaume Baixeries; Antoni Hernández-Fernández; Nuria Forns; Ramon Ferrer-i-Cancho
Abstract The relationship between the size of the whole and the size of the parts in language and music is known to follow the Menzerath-Altmann law at many levels of description (morphemes, words, sentences, …). Qualitatively, the law states that the larger the whole, the smaller its parts, e.g. the longer a word (in syllables) the shorter its syllables (in letters or phonemes). This patterning has also been found in genomes: the longer a genome (in chromosomes), the shorter its chromosomes (in base pairs). However, it has been argued recently that mean chromosome length is trivially a pure power function of chromosome number with an exponent of −1. The functional dependency between mean chromosome size and chromosome number in groups of organisms from three different kingdoms is studied. The fit of a pure power function yields exponents between −1.6 and 0.1. It is shown that an exponent of −1 is unlikely for fungi, gymnosperm plants, insects, reptiles, ray-finned fishes and amphibians. Even when the exponent is very close to −1, adding an exponential component is able to yield a better fit with regard to a pure power-law in plants, mammals, ray-finned fishes and amphibians. The parameters of the Menzerath-Altmann law in genomes deviate significantly from a power law with a −1 exponent with the exception of birds and cartilaginous fishes.
Journal of Quantitative Linguistics | 2016
Antoni Hernández-Fernández; Ramon Ferrer-i-Cancho
ABSTRACT Vocalizations, and less often gestures, have been the object of linguistic research for decades. However, the development of a general theory of communication with human language as a particular case requires a clear understanding of the organization of communication through other means. Infochemicals are chemical compounds that carry information and are employed by small organisms that cannot emit acoustic signals of an optimal frequency to achieve successful communication. Here, we investigate the distribution of infochemicals across species when they are ranked by their degree or the number of species with which they are associated (because they produce them or are sensitive to them). We evaluate the quality of the fit of different functions to the dependency between degree and rank by means of a penalty for the number of parameters of the function. Surprisingly, a double Zipf (a Zipf distribution with two regimes, each with a different exponent) is the model yielding the best fit although it is the function with the largest number of parameters. This suggests that the worldwide repertoire of infochemicals contains a core which is shared by many species and is reminiscent of the core vocabularies found for human language in dictionaries or large corpora.
Scientific Reports | 2017
Iván G. Torre; Bartolo Luque; Lucas Lacasa; Jordi Luque; Antoni Hernández-Fernández
Linguistic laws constitute one of the quantitative cornerstones of modern cognitive sciences and have been routinely investigated in written corpora, or in the equivalent transcription of oral corpora. This means that inferences of statistical patterns of language in acoustics are biased by the arbitrary, language-dependent segmentation of the signal, and virtually precludes the possibility of making comparative studies between human voice and other animal communication systems. Here we bridge this gap by proposing a method that allows to measure such patterns in acoustic signals of arbitrary origin, without needs to have access to the language corpus underneath. The method has been applied to sixteen different human languages, recovering successfully some well-known laws of human communication at timescales even below the phoneme and finding yet another link between complexity and criticality in a biological system. These methods further pave the way for new comparative studies in animal communication or the analysis of signals of unknown code.
Statistical Language and Speech Processing: 4th International Conference, SLSP 2016, Pilsen, Czech Republic, October 11-12, 2016, Proceedings | 2016
Antoni Hernández-Fernández; Bernardino Casas; Ramon Ferrer-i-Cancho; Jaume Baixeries
The pioneering research of G.K. Zipf on the relationship between word frequency and other word features led to the formulation of various linguistic laws. Here we focus on a couple of them: the meaning-frequency law, i.e. the tendency of more frequent words to be more polysemous, and the law of abbreviation, i.e. the tendency of more frequent words to be shorter. Here we evaluate the robustness of these laws in contexts where they have not been explored yet to our knowledge. The recovery of the laws again in new conditions provides support for the hypothesis that they originate from abstract mechanisms.
BioSystems | 2013
Ramon Ferrer-i-Cancho; Jaume Baixeries; Antoni Hernández-Fernández
Abstract Here we improve the mathematical arguments of Baixeries et al (BioSystems 107(3) (2012) 167–173). The corrections do not alter the conclusion that the random breakage model yields an insufficient fit to the scaling of mean chromosome length as a function of chromosome number in real genomes.