Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonieta Lavin is active.

Publication


Featured researches published by Antonieta Lavin.


Nature Neuroscience | 2009

N -Acetylcysteine reverses cocaine-induced metaplasticity

Khaled Moussawi; Alejandra M. Pacchioni; Megan M. Moran; M. Foster Olive; Justin T. Gass; Antonieta Lavin; Peter W. Kalivas

Cocaine addiction is characterized by an impaired ability to develop adaptive behaviors that can compete with cocaine seeking, implying a deficit in the ability to induce plasticity in cortico-accumbens circuitry crucial for regulating motivated behavior. We found that rats withdrawn from cocaine self-administration had a marked in vivo deficit in the ability to develop long-term potentiation (LTP) and long-term depression (LTD) in the nucleus accumbens core subregion after stimulation of the prefrontal cortex. N-acetylcysteine (NAC) treatment prevents relapse in animal models and craving in humans by activating cystine-glutamate exchange and thereby stimulating extrasynaptic metabotropic glutamate receptors (mGluR). NAC treatment of rats restored the ability to induce LTP and LTD by indirectly stimulating mGluR2/3 and mGluR5, respectively. Our findings show that cocaine self-administration induces metaplasticity that inhibits further induction of synaptic plasticity, and this impairment can be reversed by NAC, a drug that also prevents relapse.


The Journal of Neuroscience | 2004

Mechanisms Underlying Differential D1 versus D2 Dopamine Receptor Regulation of Inhibition in Prefrontal Cortex

Heather Trantham-Davidson; Laurence C. Neely; Antonieta Lavin; Jeremy K. Seamans

Typically, D1 and D2 dopamine (DA) receptors exert opposing actions on intracellular signaling molecules and often have disparate physiological effects; however, the factors determining preferential activation of D1 versus D2 signaling are not clear. Here, in vitro patch-clamp recordings show that DA concentration is a critical determinant of D1 versus D2 signaling in prefrontal cortex (PFC). Low DA concentrations (<500 nm) enhance IPSCs via D1 receptors, protein kinase A, and cAMP. Higher DA concentrations (>1 μm) decrease IPSCs via the following cascade: D2→Gi→platelet-derived growth factor receptor→↑phospholipase C→↑IP3→↑Ca2+→↓dopamine and cAMP-regulated phosphoprotein-32→↑protein phosphatase 1/2A→↓GABAA. Blockade of any molecule in the D2-linked pathway reveals a D1-mediated increase in IPSCs, suggesting that D1 effects are occluded at higher DA concentrations by this D2-mediated pathway. Thus, DA concentration, by acting through separate signaling cascades, may determine the relative amount of cortical inhibition and thereby differentially regulate the tuning of cortical networks.


The Journal of Neuroscience | 2005

Mesocortical Dopamine Neurons Operate in Distinct Temporal Domains Using Multimodal Signaling

Antonieta Lavin; Lourdes M. Nogueira; Christopher C. Lapish; R. Mark Wightman; Paul E. M. Phillips; Jeremy K. Seamans

In vivo extracellular recording studies have traditionally shown that dopamine (DA) transiently inhibits prefrontal cortex (PFC) neurons, yet recent biophysical measurements in vitro indicate that DA enhances the evoked excitability of PFC neurons for prolonged periods. Moreover, although DA neurons apparently encode stimulus salience by transient alterations in firing, the temporal properties of the PFC DA signal associated with various behaviors is often extraordinarily prolonged. The present study used in vivo electrophysiological and electrochemical measures to show that the mesocortical system produces a fast non-DA-mediated postsynaptic response in the PFC that appears to be initiated by glutamate. In contrast, short burst stimulation of mesocortical DA neurons that produced transient (<4 s) DA release in the PFC caused a simultaneous reduction in spontaneous firing (consistent with extracellular in vivo recordings) and a form of DA-induced potentiation in which evoked firing was increased for tens of minutes (consistent with in vitro measurements). We suggest that the mesocortical system might transmit fast signals about reward or salience via corelease of glutamate, whereas the simultaneous prolonged DA-mediated modulation of firing biases the long-term processing dynamics of PFC networks.


The Journal of Neuroscience | 1997

Interconnected Parallel Circuits between Rat Nucleus Accumbens and Thalamus Revealed by Retrograde Transynaptic Transport of Pseudorabies Virus

Patricio O'Donnell; Antonieta Lavin; Lynn W. Enquist; Anthony A. Grace; Jp Card

One of the primary outputs of the nucleus accumbens is directed to the mediodorsal thalamic nucleus (MD) via its projections to the ventral pallidum (VP), with the core andshell regions of the accumbens projecting to the lateral and medial aspects of the VP, respectively. In this study, the multisynaptic organization of nucleus accumbens projections was assessed using intracerebral injections of an attenuated strain of pseudorabies virus, a neurotropic α herpesvirus that replicates in synaptically linked neurons. Injection of pseudorabies virus into different regions of the MD or reticular thalamic nucleus (RTN) produced retrograde transynaptic infections that revealed multisynaptic interactions between these areas and the basal forebrain. Immunohistochemical localization of viral antigen at short postinoculation intervals confirmed that the medial MD (m-MD) receives direct projections from the medial VP, rostral RTN, and other regions previously shown to project to this region of the thalamus. At longer survival intervals, injections confined to the m-MD resulted in transynaptic infection of neurons in the accumbens shell but not in the core. Injections that also included the central segment of the MD produced retrograde infection of neurons in the lateral VP and the polymorph (pallidal) region of the olfactory tubercle (OT) and transynaptic infection of a small number of neurons in the rostral accumbens core. Injections in the lateral MD resulted in retrograde infection in the globus pallidus (GP) and in transynaptic infection in the caudate-putamen. Viral injections into the rostroventral pole of the RTN infected neurons in the medial and lateral VP and at longer postinoculation intervals, led to transynaptic infection of scattered neurons in the shell and core. Injection of virus into the intermediate RTN resulted in infection of medial VP neurons and second-order infection of neurons in the accumbens shell. Injections in the caudal RTN or the lateral MD resulted in direct retrograde labeling of cells within the GP and transynaptic infection of neurons in the caudate-putamen. These results indicate that the main output of VP neurons receiving inputs from the shell of the accumbens is heavily directed to the m-MD, whereas a small number of core neurons appear to influence the central MD via the lateral VP. Further segregation in the flow of information to the MD is apparent in the organization of VP and GP projections to subdivisions of the RTN that give rise to MD afferents. Collectively, these data provide a morphological basis for the control of the thalamocortical system by ventral striatal regions, in which parallel connections to the RTN may exert control over activity states of cortical regions.


Psychopharmacology | 2007

The ability of the mesocortical dopamine system to operate in distinct temporal modes

Christopher C. Lapish; Sven Kroener; Daniel Durstewitz; Antonieta Lavin; Jeremy K. Seamans

BackgroundThis review discusses evidence that cells in the mesocortical dopamine (DA) system influence information processing in target areas across three distinct temporal domains.DiscussionsPhasic bursting of midbrain DA neurons may provide temporally precise information about the mismatch between expected and actual rewards (prediction errors) that has been hypothesized to serve as a learning signal in efferent regions. However, because DA acts as a relatively slow modulator of cortical neurotransmission, it is unclear whether DA can indeed act to precisely transmit prediction errors to prefrontal cortex (PFC). In light of recent physiological and anatomical evidence, we propose that corelease of glutamate from DA and/or non-DA neurons in the VTA could serve to transmit this temporally precise signal. In contrast, DA acts in a protracted manner to provide spatially and temporally diffuse modulation of PFC pyramidal neurons and interneurons. This modulation occurs first via a relatively rapid depolarization of fast-spiking interneurons that acts on the order of seconds. This is followed by a more protracted modulation of a variety of other ionic currents on timescales of minutes to hours, which may bias the manner in which cortical networks process information. However, the prolonged actions of DA may be curtailed by counteracting influences, which likely include opposing actions at D1 and D2-like receptors that have been shown to be time- and concentration-dependent. In this way, the mesocortical DA system optimizes the characteristics of glutamate, GABA, and DA neurotransmission both within the midbrain and cortex to communicate temporally precise information and to modulate network activity patterns on prolonged timescales.


Biological Psychiatry | 2011

Reduced Dysbindin Expression Mediates N-Methyl-D-Aspartate Receptor Hypofunction and Impaired Working Memory Performance

Katherine H. Karlsgodt; Karla Robleto; Heather Trantham-Davidson; Corey Jairl; Tyrone D. Cannon; Antonieta Lavin; J. David Jentsch

BACKGROUND Schizophrenia is a heritable disorder associated with disrupted neural transmission and dysfunction of brain systems involved in higher cognition. The gene encoding dystrobrevin-binding-protein-1 (dysbindin) is a putative candidate gene associated with cognitive impairments, including memory deficits, in both schizophrenia patients and unaffected individuals. The underlying mechanism is thought to be based in changes in glutamatergic and dopaminergic function within the corticostriatal networks known to be critical for schizophrenia. This hypothesis derives support from studies of mice with a null mutation in the dysbindin gene that exhibit memory dysfunction and excitatory neurotransmission abnormalities in prefrontal and hippocampal networks. At a cellular level, dysbindin is thought to mediate presynaptic glutamatergic transmission. METHODS We investigated the relationship between glutamate receptor dynamics and memory performance in dysbindin mutant mice. We assessed N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor function in prefrontal cortex pyramidal neurons in vitro with whole-cell recordings, molecular quantitative analyses (reverse transcription-polymerase chain reaction) of the mandatory NMDA receptor subunit NR1, and cognitive function with a spatial working memory task. RESULTS Decreases in dysbindin are associated with specific decreases in NMDA-evoked currents in prefrontal pyramidal neurons, as well as decreases in NR1 expression. Furthermore, the degree of NR1 expression correlates with spatial working memory performance, providing a mechanistic explanation for cognitive changes previously associated with dysbindin expression. CONCLUSIONS These data show a significant downregulation of NMDA receptors due to dysbindin deficiency and illuminate molecular mechanisms mediating the association between dysbindin insufficiency and cognitive impairments associated with schizophrenia, encouraging study of the dysbindin/NR1 expression association in humans with schizophrenia.


Neuropsychopharmacology | 2009

Dysbindin Modulates Prefrontal Cortical Glutamatergic Circuits and Working Memory Function in Mice

James David Jentsch; Heather Trantham-Davidson; Corey Jairl; Matthew Tinsley; Tyrone D. Cannon; Antonieta Lavin

Behavioral genetic studies of humans have associated variation in the DTNBP1 gene with schizophrenia and its cognitive deficit phenotypes. The protein coded for by DTNBP1, dysbindin, is expressed within forebrain glutamatergic neurons, in which it interacts with proteins involved in vesicular trafficking and exocytosis. In order to further delineate the cellular, physiological, and behavioral phenotypes associated with reduced dysbindin expression, we conducted studies in mice carrying a null mutation within the dtnbp1 gene. Dysbindin mutants showed impairments of spatial working memory compared with wild-type controls; heterozygous mice showed intermediate levels of cognitive dysfunction. Deep-layer pyramidal neurons recorded in the prefrontal cortex of mutant mice showed reductions in paired-pulse facilitation, and evoked and miniature excitatory post-synaptic currents, indicating a difference in the function of pre-synaptic glutamatergic terminals as well as elevated spike thresholds. Taken together, these data indicate that dysbindin potently regulates excitatory transmission in the prefrontal cortex, potentially through a pre-synaptic mechanism, and consequently modulates cognitive functions depending on this brain region, providing new insights into the molecular mechanisms underlying cortical dysfunction in schizophrenia.


The Journal of Physiology | 2007

α2‐Noradrenergic receptors activation enhances excitability and synaptic integration in rat prefrontal cortex pyramidal neurons via inhibition of HCN currents

David B. Carr; Glenn D. Andrews; William B. Glen; Antonieta Lavin

Stimulation of α2‐noradrenergic (NA) receptors within the PFC improves working memory performance. This improvement is accompanied by a selective increase in the activity of PFC neurons during delay periods, although the cellular mechanisms responsible for this enhanced response are largely unknown. Here we used current and voltage clamp recordings to characterize the response of layer V–VI PFC pyramidal neurons to α2‐NA receptor stimulation. α2‐NA receptor activation produced a small hyperpolarization of the resting membrane potential, which was accompanied by an increase in input resistance and evoked firing. Voltage clamp analysis demonstrated that α2‐NA receptor stimulation inhibited a caesium and ZD7288‐sensitive hyperpolarization‐activated (HCN) inward current. Suppression of HCN current by α2‐NA stimulation was not dependent on adenylate cyclase but instead required activation of a PLC–PKC linked signalling pathway. Similar to direct blockade of HCN channels, α2‐NA receptor stimulation produced a significant enhancement in temporal summation during trains of distally evoked EPSPs. These dual effects of α2‐NA receptor stimulation – membrane hyperpolarization and enhanced temporal integration – together produce an increase in the overall gain of the response of PFC pyramidal neurons to excitatory synaptic input. The net effect is the suppression of isolated excitatory inputs while enhancing the response to a coherent burst of synaptic activity.


Neuropsychopharmacology | 2006

Methylphenidate increases cortical excitability via activation of alpha-2 noradrenergic receptors.

Glenn D Andrews; Antonieta Lavin

Although methylphenidate (MPH), a catecholaminergic reuptake blocker, is prescribed for attention-deficit/hyperactivity disorder, there is a dearth of information regarding the cellular basis of its actions. To address this issue, we used whole-cell patch-clamp recordings to investigate the roles of various catecholamine receptors in MPH-induced changes in cortical neuron excitability. We bath-applied dopamine or noradrenaline receptor antagonists in combination with MPH to pyramidal cells located in deep layers of the infralimbic and prelimbic prefrontal cortices. Application of MPH (10 μM) by itself increased cortical cell excitability in slices obtained from juvenile rats. This MPH-mediated increase in excitability was lost when catecholamines were depleted with reserpine prior to recording, demonstrating the requirement for a presynaptic monoamine component. Antagonist studies further revealed that stimulation of alpha-2 noradrenergic receptors mediates the MPH-induced increase in intrinsic excitability. Dopamine D1 receptors played no observable role in the actions of MPH. We therefore propose that MPH is acting to increase catecholaminergic tone in the PFC, and thereby increases cortical excitability by mediating the disinhibition of pyramidal cells through mechanisms that may include activation of alpha-2 adrenoreceptors located in interneurons.


Neuropsychopharmacology | 2005

Prenatal disruption of neocortical development alters prefrontal cortical neuron responses to dopamine in adult rats

Antonieta Lavin; Holly Moore; Anthony A. Grace

A growing body of evidence suggests that structural changes in the cortex may disrupt dopaminergic transmission in circuits involving the prefrontal cortex (PFC) and may contribute to the etiology of schizophrenia. In this study, we utilize a rodent model of neonatal disruption of cortical development using prenatal administration of the mitotoxin methylazoxymethanol acetate (MAM). Using intracellular recordings in vivo, we compare the physiology of prefrontal cortical neurons and their responses to topical administration of dopamine (DA) in intact animals and adult rats treated prenatally with MAM. Topical administration of DA hyperpolarized the membrane potential (MP) and decreased the firing rate of neurons recorded in deep layers of the PFC in intact animals. Furthermore, electrical stimulation of the VTA evoked fast onset epsps or long-lasting depolarizations in PFC neurons. In comparison, PFC neurons recorded in MAM-treated animals had significantly faster baseline firing rates. Moreover, topical administration of DA did not affect the MP or firing rate of the neurons in MAM-treated animals. However, MAM-treated animals exhibited an increase in the percentage of neurons responding with long-lasting depolarizations to stimulation of the VTA. The results of this study indicate that PFC neurons in the MAM-treated rats are not responsive to DA administered superficially, while at the same time exhibit greater responsiveness to VTA stimulation. These results are consistent with a rewiring of the corticolimbic system in response to neurodevelopmental insults.

Collaboration


Dive into the Antonieta Lavin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heather Trantham-Davidson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Lourdes M. Nogueira

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Peter W. Kalivas

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Tamas Tompa

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmela M. Reichel

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Corey Jairl

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy K. Seamans

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge