Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonin H. Bouchez is active.

Publication


Featured researches published by Antonin H. Bouchez.


Publications of the Astronomical Society of the Pacific | 2006

The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview

Peter L. Wizinowich; David Le Mignant; Antonin H. Bouchez; Randy Campbell; Jason C. Y. Chin; Adam R. Contos; Marcos A. van Dam; Scott K. Hartman; Erik M. Johansson; Robert E. Lafon; Hilton Lewis; Paul J. Stomski; Douglas M. Summers; Curtis G. Brown; Pamela M. Danforth; Claire E. Max; Deanna M. Pennington

The Keck Observatory began science observations with a laser guide star adaptive optics system, the first such system on an 8-10 m class telescope, in late 2004. This new capability greatly extends the scientific potential of the Keck II Telescope, allowing near-diffraction-limited observations in the near-infrared using natural guide stars as faint as 19th magnitude. This paper describes the conceptual approach and technical implementation followed for this system, including lessons learned, and provides an overview of the early science capabilities.


Nature | 2002

Direct detection of variable tropospheric clouds near Titan's south pole

Michael E. Brown; Antonin H. Bouchez; Caitlin Ann Griffith

Atmospheric conditions on Saturns largest satellite, Titan, allow the possibility that it could possess a methane condensation and precipitation cycle with many similarities to Earths hydrological cycle. Detailed imaging studies of Titan have hitherto shown no direct evidence for tropospheric condensation clouds, although there has been indirect spectroscopic evidence for transient clouds. Here we report images and spectra of Titan that show clearly transient clouds, concentrated near the south pole, which is currently near the point of maximum solar heating. The discovery of these clouds demonstrates the existence of condensation and localized moist convection in Titans atmosphere. Their location suggests that methane cloud formation is controlled seasonally by small variations in surface temperature, and that the clouds will move from the south to the north pole on a 15-year timescale.


Publications of the Astronomical Society of the Pacific | 2006

The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Performance Characterization

Marcos A. van Dam; Antonin H. Bouchez; David Le Mignant; Erik M. Johansson; Peter L. Wizinowich; Randy Campbell; Jason C. Y. Chin; Scott K. Hartman; Robert E. Lafon; Paul J. Stomski; Douglas M. Summers

The Keck II Telescope is the first 8-10 m class telescope equipped with a laser guide star adaptive optics (LGS AO) system. Under normal seeing conditions, the LGS AO system produces K-band Strehl ratios between 30% and 40% using bright tip-tilt guide stars, and it works well with tip-tilt guide stars as faint as , with partial correction for stars up to a magnitude fainter. This paper presents the algorithms implemented m p 18 R in the LGS AO system, as well as experimental performance results. A detailed error budget shows excellent agreement between the measured and expected image quality for both bright and faint guide stars.


Publications of the Astronomical Society of the Pacific | 2011

A New High Contrast Imaging Program at Palomar Observatory

Sasha Hinkley; Ben R. Oppenheimer; Neil Zimmerman; Douglas Brenner; Ian R. Parry; Justin R. Crepp; Gautam Vasisht; E. R. Ligon; David A. King; Rémi Soummer; Anand Sivaramakrishnan; Charles A. Beichman; Michael Shao; Lewis C. Roberts; Antonin H. Bouchez; Richard G. Dekany; Laurent Pueyo; Jennifer E. Roberts; Thomas G. Lockhart; Chengxing Zhai; Chris Shelton; Rick Burruss

We describe a new instrument that forms the core of a long-term high contrast imaging program at the 200 inch (5 m) Hale Telescope at Palomar Observatory. The primary scientific thrust is to obtain images and low-resolution spectroscopy of brown dwarfs and young exoplanets of several Jupiter masses in the vicinity of stars within 50 pc of the Sun. The instrument is a microlens-based integral field spectrograph integrated with a diffraction-limited, apodized-pupil Lyot coronagraph. The entire combination is mounted behind the Palomar adaptive optics (AO) system. The spectrograph obtains imaging in 23 channels across the J and H bands (1.06–1.78 μm). The image plane of our spectrograph is subdivided by a 200 × 200 element microlens array with a plate scale of 19.2 mas per microlens, critically sampling the diffraction-limited point-spread function at 1.06 μm. In addition to obtaining spectra, this wavelength resolution allows suppression of the chromatically dependent speckle noise, which we describe. In addition, we have recently installed a novel internal wave front calibration system that will provide continuous updates to the AO system every 0.5–1.0 minutes by sensing the wave front within the coronagraph. The Palomar AO system is undergoing an upgrade to a much higher order AO system (PALM-3000): a 3388-actuator tweeter deformable mirror working together with the existing 241-actuator mirror. This system, the highest-resolution AO corrector of its kind, will allow correction with subapertures as small as 8.1 cm at the telescope pupil using natural guide stars. The coronagraph alone has achieved an initial dynamic range in the H band of 2 × 10^(-4) at 1″, without speckle noise suppression. We demonstrate that spectral speckle suppression provides a factor of 10–20 improvement over this, bringing our current contrast at 1″ to ~2 × 10^(-5). This system is the first of a new generation of apodized-pupil coronagraphs combined with high-order adaptive optics and integral field spectrographs (e.g., GPI, SPHERE, HiCIAO), and we anticipate that this instrument will make a lasting contribution to high-contrast imaging in the Northern Hemisphere for years.


Journal of Geophysical Research | 1999

Jupiter's visible aurora and Io footprint

Ashwin R. Vasavada; Antonin H. Bouchez; Andrew P. Ingersoll; Blane Little; Clifford D. Anger

Images obtained by the Galileo spacecrafts solid-state imaging (SSI) system represent the first survey of Jupiters northern auroral emissions at visible wavelengths and on the nightside of the planet. These images captured the emissions with unprecedented spatial resolutions down to ∼26 km pixel^(−1). Four classes of emission were observed: (1) a continuous, primary arc associated with the middle/outer magnetosphere, (2) a variable secondary arc associated with the region just beyond Ios torus, (3) diffuse “polar cap” emission, and (4) a patch and tail associated with the magnetic footprint of Io. The primary arc emission occurs at an altitude 245±30 km above the 1-bar pressure level. Its horizontal width is typically a few hundred kilometers, and its total optical power output varied between ∼10^(10) and ∼10^(11) W in observations taken months apart. The location of the primary arc in planetary coordinates is similar to that on dayside images at other wavelengths and does not vary with local time. The morphology of the primary arc is not constant, changing from a multiply branched, latitudinally distributed pattern after dusk to a single, narrow arc before dawn. Emission from Ios ionospheric footprint is distinct from both the primary and secondary arcs. Measurements of its optical power output ranged from 2 to 7×10^8 W.


Journal of Geophysical Research | 2006

Overview of the coordinated ground-based observations of Titan during the Huygens mission

O. Witasse; Jean-Pierre Lebreton; M. K. Bird; Robindro Dutta-Roy; William M. Folkner; R. A. Preston; Sami W. Asmar; Leonid I. Gurvits; Sergei Pogrebenko; Ian M. Avruch; R. M. Campbell; Hayley E. Bignall; Michael A. Garrett; Huib Jan van Langevelde; Stephen M. Parsley; Cormac Reynolds; Arpad Szomoru; J. E. Reynolds; Christopher J. Phillips; Robert J. Sault; Anastasios K. Tzioumis; Frank D. Ghigo; Glen I. Langston; W. F. Brisken; Jonathan D. Romney; Ari Mujunen; Jouko Ritakari; Steven J. Tingay; Richard G. Dodson; C.G.M. van 't Klooster

Coordinated ground-based observations of Titan were performed around or during the Huygens atmospheric probe mission at Titan on 14 January 2005, connecting the momentary in situ observations by the probe with the synoptic coverage provided by continuing ground-based programs. These observations consisted of three different categories: (1) radio telescope tracking of the Huygens signal at 2040 MHz, (2) observations of the atmosphere and surface of Titan, and (3) attempts to observe radiation emitted during the Huygens Probe entry into Titans atmosphere. The Probe radio signal was successfully acquired by a network of terrestrial telescopes, recovering a vertical profile of wind speed in Titans atmosphere from 140 km altitude down to the surface. Ground-based observations brought new information on atmosphere and surface properties of the largest Saturnian moon. No positive detection of phenomena associated with the Probe entry was reported. This paper reviews all these measurements and highlights the achieved results. The ground-based observations, both radio and optical, are of fundamental importance for the interpretation of results from the Huygens mission.


The Astrophysical Journal | 2005

The first laser guide star adaptive optics observations of the galactic center : Sgr A*'S infrared color and the extended red emission in its vicinity

Andrea M. Ghez; Seth David Hornstein; Jessica R. Lu; Antonin H. Bouchez; D. Le Mignant; M. A. van Dam; Peter L. Wizinowich; K. Matthews; Mark R. Morris; E. E. Becklin; Randy Campbell; Jason C. Y. Chin; Scott K. Hartman; Erik M. Johansson; Robert E. Lafon; Paul J. Stomski; Douglas M. Summers

We present the first Laser Guide Star Adaptive Optics (LGS-AO ) observations of the Galactic center. LGSAO has dramatically improved the quality and robustness with which high angular resolution infrared images of the Galactic center can be obtained with the W. M. Keck II 10-meter telescope. Specifically, Strehl ratios of 0.7 and 0.3 at L’[3.8 µm] and K’[2.1 µm], respectively, are achieved in these LGS-AO images; these are at least a factor of two higher and a factor of four to five more stable ag ainst atmospheric fluctuations than the Strehl ratios delivered thus far with the Keck Natural Guide Star AO system on the Galactic center. Furthermore, these observations are the first that cover a large area (76 ′′ × 76 ′′ ) surrounding the central black hole at diffractionlimited resolution for an 8-10 meter class telescope. Durin g our observations, the infrared counterpart to the central supermassive black hole, Sgr A*-IR, showed signific ant infrared intensity variations, with observed L’ magnitudes ranging from 12.6 to 14.5 mag and a decrease in fl ux density of a factor of two over an 8 minute interval. The faintest end of our L’ detections, 1.3 m Jy (dereddened), is the lowest level of emission yet observed for this source by a factor of 3. No significant varia tion in the location of SgrA*-IR is detected as a function of either wavelength or intensity. Previous claim s of such positional variations are easily attributable to a nearby (0. 09 or 720 AU, projected), extended, very red source, which we suggest arises from a locally heated dust feature. Near a peak in its intensity, we obtaine d the first measurement of SgrA*-IR’s K’-L’ color; its K’-L’ of 3.0 ± 0.2 mag (observed) or 1.4 ± 0.2 (dereddened) corresponds to an intrinsic spectral index of � -0.5 ± 0.3 for F� � � � . This is significantly bluer than other recent infrared meas urements from the literature, which suggest � = -4 ± 1. Because our measurement was taken at a time when Sgr A* was�6 times brighter in the infrared than the other measurements, we posit that the spectral index of the emission arising from the vicinity of our Galaxy’s central black hole may depend on the strength of the flare, with stronger flares giving rise to a higher fraction of high energy electrons in the emit ting region. Subject headings:black hole physics ‐ Galaxy:center — infrared:stars ‐ techniques:high angular resolution


Nature | 2006

A low density of 0.8 g cm-3 for the Trojan binary asteroid 617 Patroclus

Franck Marchis; Daniel Hestroffer; Pascal Descamps; Jerome Berthier; Antonin H. Bouchez; Randall D. Campbell; Jason C. Y. Chin; Marcos A. van Dam; Scott K. Hartman; Erik M. Johansson; Robert E. Lafon; David Le Mignant; Imke de Pater; Paul J. Stomski; Doug Summers; Frederic Vachier; Peter L. Wizinovich; Michael H. Wong

The Trojan population consists of two swarms of asteroids following the same orbit as Jupiter and located at the L4 and L5 stable Lagrange points of the Jupiter–Sun system (leading and following Jupiter by 60°). The asteroid 617 Patroclus is the only known binary Trojan. The orbit of this double system was hitherto unknown. Here we report that the components, separated by 680 km, move around the systems centre of mass, describing a roughly circular orbit. Using this orbital information, combined with thermal measurements to estimate the size of the components, we derive a very low density of 0.8 - 0.1 + 0.2 g cm-3. The components of 617 Patroclus are therefore very porous or composed mostly of water ice, suggesting that they could have been formed in the outer part of the Solar System.


The Astrophysical Journal | 2005

Discovery of temperate latitude clouds on titan

Henry G. Roe; Antonin H. Bouchez; Chadwick Aaron Trujillo; Emily L. Schaller; Michael E. Brown

Until now, all the clouds imaged in Titans troposphere have been found at far southern latitudes (60°-90° south). The occurrence and location of these clouds is thought to be the result of convection driven by the maximum annual solar heating of Titans surface, which occurs at summer solstice (2002 October) in this south polar region. We report the first observations of a new recurring type of tropospheric cloud feature, confined narrowly to ~40° south latitude, which cannot be explained by this simple insolation hypothesis. We propose two classes of formation scenario, one linked to surface geography and the other to seasonally evolving circulation, which will be easily distinguished with continued observations over the next few years.


The Astrophysical Journal | 2005

Statistics of Titan's South Polar Tropospheric Clouds

Antonin H. Bouchez; Michael E. Brown

We present the first long-term study of the behavior of the sporadically observed tropospheric clouds recently discovered near Titans south pole. We find that one or more small individual cloud systems is present in the 70°-80° south region during every night of observation. These clouds account for 0.5%-1% of Titans 2.0 μm flux, consistent with a global cloud cover fraction of 0.2%-0.6%. Clouds observed over multiple-night observing periods remained nearly fixed in brightness and position with respect to Titans surface. The continual presence of south polar clouds is consistent with the hypothesis that surface heating during the long period of continuous polar sunlight at the time of Titans southern summer solstice drives seasonal convection and cloud formation at the pole.

Collaboration


Dive into the Antonin H. Bouchez's collaboration.

Top Co-Authors

Avatar

Michael E. Brown

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Richard G. Dekany

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitchell Troy

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rick Burruss

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge