Antonín Hlaváček
Masaryk University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonín Hlaváček.
ACS Applied Materials & Interfaces | 2014
Antonín Hlaváček; Andreas Sedlmeier; Petr Skládal; Hans H. Gorris
Photon-upconverting nanoparticles (UCNPs) have attracted much interest as a new class of luminescent label for the background-free detection in bioanalytical applications. UCNPs and other nanoparticles are commonly coated with a silica shell to improve their dispersibility and chemical stability in aqueous buffer and to incorporate functional groups for subsequent bioconjugation steps. The process of silica coating, however, is difficult to control without suitable analytical and preparative methods. Here, we have introduced agarose gel electrophoresis for the analysis and purification of silica-coated UCNPs. The silica shell can be doped with a fluorescent dye for direct detection in the gel without influencing the structure or electrophoretic mobility of the nanoparticles. The preparation of a bare silica shell by reverse microemulsion resulted in individual nanoparticles but also distinct aggregates that could be separated and isolated from the agarose gel. In contrast, the preparation of an ultrathin carboxylated silica shell yielded non-aggregated UCNPs only that could be directly used for protein conjugation. Agarose gel electrophoresis has also facilitated an efficient separation of protein-UCNP conjugates from excess reagents.
Analytical Chemistry | 2016
Antonín Hlaváček; Zdeněk Farka; Maria Hübner; Veronika Horňáková; Daniel Němeček; Reinhard Niessner; Petr Skládal; Dietmar Knopp; Hans H. Gorris
Photon-upconverting nanoparticles (UCNPs) emit light of shorter wavelength under near-infrared excitation and thus avoid optical background interference. We have exploited this unique photophysical feature to establish a sensitive competitive immunoassay for the detection of the pharmaceutical micropollutant diclofenac (DCF) in water. The so-called upconversion-linked immunosorbent assay (ULISA) was critically dependent on the design of the upconversion luminescent detection label. Silica-coated UCNPs (50 nm in diameter) exposing carboxyl groups on the surface were conjugated to a secondary anti-IgG antibody. We investigated the structure and monodispersity of the nanoconjugates in detail. Using a highly affine anti-DCF primary antibody, the optimized ULISA reached a detection limit of 0.05 ng DCF per mL. This performance came close to a conventional enzyme-linked immunosorbent assay (ELISA) without the need for an enzyme-mediated signal amplification step. The ULISA was further employed for analyzing drinking and surface water samples. The results were consistent with a conventional ELISA as well as liquid chromatography-mass spectrometry (LC-MS).
Electrophoresis | 2012
Antonín Hlaváček; Petr Skládal
Synthesized nanoparticles often require fine fractionation according to shape, dimension, mass, chemical composition, charge, and other properties in order to become suitable for practical use. Quantum dots (QDs) are luminescent nanocrystals with narrow emission peaks. This property has been widely utilized for the multiplexed sensing and barcoding of microparticles. QDs with narrower emission peaks are preferred for such applications. The width of the emission peaks can be significantly reduced after purification. A newly developed preparative isotachophoretic method employs the dependence of spectral properties and electrophoretic mobility on the diameter of QDs. Separated fractions of QDs revealed narrower emission peaks (72% of the original width) and improved quantum yield (two‐fold). The usefulness of the developed isotachophoresis for purification and analysis of other nanostructures, for example, plasmonic nanoparticles and nanobioconjugates, is expected, too.
Analytical Chemistry | 2016
Andreas Sedlmeier; Antonín Hlaváček; Lucia Birner; Matthias J. Mickert; Verena Muhr; Thomas Hirsch; Paul L. A. M. Corstjens; Hans J. Tanke; Tero Soukka; Hans H. Gorris
An upconversion laser scanner has been optimized to exploit the advantages of photon-upconverting nanoparticles (UCNPs) for background-free imaging on a macroscopic scale. A collimated 980 nm laser beam afforded high local excitation densities to account for the nonlinear luminescence response of UCNPs. As few as 2000 nanoparticles were detectable, and the linear dynamic range covered more than 5 orders of magnitude, which is essentially impossible by using conventional fluorescent dyes. UCNPs covered by a dye-doped silica shell were separated by agarose gel electrophoresis and scanned by a conventional fluorescence scanner as well as the upconversion scanner. Both optical labels could be detected independently. Finally, upconversion images of lateral flow test strips were recorded to facilitate the sensitive and quantitative detection of disease markers. A marker for the parasitic worm Schistosoma was used in this study.
Analytical Chemistry | 2017
Zdeněk Farka; Matthias J. Mickert; Antonín Hlaváček; Petr Skládal; Hans H. Gorris
The ability to detect disease markers at the single molecule level promises the ultimate sensitivity in clinical diagnosis. Fluorescence-based single-molecule analysis, however, is limited by matrix interference and can only probe a very small detection volume, which is typically not suitable for real world analytical applications. We have developed a microtiter plate immunoassay for counting single molecules of the cancer marker prostate specific antigen (PSA) using photon-upconversion nanoparticles (UCNPs) as labels that can be detected without background fluorescence. Individual sandwich immunocomplexes consisting of (1) an anti-PSA antibody immobilized to the surface of a microtiter well, (2) PSA, and (3) an anti-PSA antibody-UCNP conjugate were counted under a wide-field epifluorescence microscope equipped with a 980 nm laser excitation source. The single-molecule (digital) upconversion-linked immunosorbent assay (ULISA) reaches a limit of detection of 1.2 pg mL-1 (42 fM) PSA in 25% blood serum, which is about ten times more sensitive than commercial ELISAs, and covers a dynamic range of three orders of magnitude. This upconversion detection mode has the potential to pave the way for a new generation of digital immunoassays.
Electrophoresis | 2018
Tereza Vaneckova; Kristyna Smerkova; Jan Zitka; David Hynek; Ondrej Zitka; Antonín Hlaváček; František Foret; Vojtech Adam; Marketa Vaculovicova
Upconversion nanoparticles (UCNPs) are an emerging class of optical materials with high potential in bioimaging due to practically no background signal and high penetration depth. Their excellent optical properties and easy surface functionalization make them perfect for conjugation with targeting ligands. In this work, capillary electrophoretic (CE) method with laser‐induced fluorescence detection was used to investigate the behavior of carboxyl‐silica‐coated UCNPs. Folic acid, targeting folate receptor overexpressed by wide variety of cancer cells, was used for illustrative purposes and assessed by CE under optimized conditions. Peptide‐mediated bioconjugation of antibodies to UCNPs was also investigated. Despite the numerous advantages of CE, this is the first time that CE was employed for characterization of UCNPs and their bioconjugates. The separation conditions were optimized including the background electrolyte concentration and pH. The optimized electrolyte was 20 mM borate buffer with pH 8.
Monatshefte Fur Chemie | 2017
Veronika Horáčková; Antonín Hlaváček; Veronika Čunderlová; Matěj Pastucha; Petr Skládal
Regulation of cellular processes and biochemical pathways would not be possible without formation of specific non-covalent complexes between nucleic acids and proteins. Single-stranded DNA-binding proteins have a high affinity for ssDNA and this interaction plays a crucial role in the control of DNA replication, recombination, transcription, translation, and repair. Characterization of the DNA–protein interactions would improve the information about abnormal cells and provide a better understanding of tumor growth, its prevention, and medical treatment. The interaction between the ssDNA-binding protein from E. coli with two ssDNA molecules (either M13mp18, 7249 bases, or a short 10 base oligonucleotide) was analyzed using atomic force microscopy providing images of the formed complexes on mica. The corresponding binding forces were determined using force spectroscopy using cantilever tips modified with ssDNA. The interactions were also characterized using the surface plasmon resonance (Biacore) providing reference data on kinetics in real time. The data from different methods were critically evaluated and discussed with respect to correlation of the single- (force spectroscopy) and multi-molecular (biosensor kinetics) results.Graphical abstract
Electroanalysis | 2009
Jiří Žeravík; Antonín Hlaváček; Karel Lacina; Petr Skládal
Mikrochimica Acta | 2016
Veronika Čunderlová; Antonín Hlaváček; Veronika Horňáková; Miroslav Peterek; Daniel Němeček; Aleš Hampl; Luděk Eyer; Petr Skládal
Mikrochimica Acta | 2012
Antonín Hlaváček; Pavel Bouchal; Petr Skládal