Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonino Raffone is active.

Publication


Featured researches published by Antonino Raffone.


Journal of Cognitive Neuroscience | 2001

A Cortical Mechanism for Binding in Visual Working Memory

Antonino Raffone; Gezinus Wolters

Luck and Vogel (1997) showed that the storage capacity of visual working memory is about four objects and that this capacity does not depend on the number of features making up the objects. Thus, visual working memory seems to process integrated objects rather than individual features, just as verbal working memory handles higher-order chunks instead of individual features or letters. In this article, we present a model based on synchronization and desynchronization of reverberatory neural assemblies, which can parsimoniously account for both the limited capacity of visual working memory, and for the temporary binding of multiple assemblies into a single pattern. A critical capacity of about three to four independent patterns showed up in our simulations, consistent with the results of Luck and Vogel. The same desynchronizing mechanism optimizing phase segregation between assemblies coding for separate features or multifeature objects poses a limit to the number of oscillatory reverberations. We show how retention of multiple features as visual chunks (feature conjunctions or objects) in terms of synchronized reverberatory assemblies may be achieved with and without long-term memory guidance.


Brain Research Bulletin | 2010

Neural correlates of focused attention and cognitive monitoring in meditation.

Antonietta Manna; Antonino Raffone; Mauro Gianni Perrucci; Davide Nardo; Antonio Ferretti; Armando Tartaro; Alessandro Londei; Cosimo Del Gratta; Marta Olivetti Belardinelli; Gian Luca Romani

Meditation refers to a family of complex emotional and attentional regulatory practices, which can be classified into two main styles - focused attention (FA) and open monitoring (OM) - involving different attentional, cognitive monitoring and awareness processes. In a functional magnetic resonance study we originally characterized and contrasted FA and OM meditation forms within the same experiment, by an integrated FA-OM design. Theravada Buddhist monks, expert in both FA and OM meditation forms, and lay novices with 10 days of meditation practice, participated in the experiment. Our evidence suggests that expert meditators control cognitive engagement in conscious processing of sensory-related, thought and emotion contents, by massive self-regulation of fronto-parietal and insular areas in the left hemisphere, in a meditation state-dependent fashion. We also found that anterior cingulate and dorsolateral prefrontal cortices play antagonist roles in the executive control of the attention setting in meditation tasks. Our findings resolve the controversy between the hypothesis that meditative states are associated to transient hypofrontality or deactivation of executive brain areas, and evidence about the activation of executive brain areas in meditation. Finally, our study suggests that a functional reorganization of brain activity patterns for focused attention and cognitive monitoring takes place with mental practice, and that meditation-related neuroplasticity is crucially associated to a functional reorganization of activity patterns in prefrontal cortex and in the insula.


Neural Networks | 2005

Recall of memory sequences by interaction of the dentate and CA3: A revised model of the phase precession

John E. Lisman; Lucia M. Talamini; Antonino Raffone

Behavioral and electrophysiological evidence indicates that the hippocampus has a special role in the encoding and recall of memory sequences. Importantly, the hippocampal phase precession, a phenomenon recorded as a rat moves through place fields, can be interpreted as cued recall of the sequence of upcoming places. The phase precession can be recorded in all hippocampal regions, but the role of each region has been unclear. Here, we suggest how the dentate and CA3 regions can work together to learn sequences, recall sequences, and generate the phase precession. Our proposal is constrained by information regarding synaptic plasticity rules, network connectivity, timing delays and theta/gamma oscillations.


Journal of Experimental Psychology: Human Perception and Performance | 2006

What Do We Learn from Binding Features? Evidence for Multilevel Feature Integration.

Lorenza S. Colzato; Antonino Raffone; Bernhard Hommel

Four experiments were conducted to investigate the relationship between the binding of visual features (as measured by their aftereffects on subsequent binding) and the learning of feature-conjunction probabilities. Both binding and learning effects were obtained, but they did not interact. Interestingly, (shape-color) binding effects disappeared with increasing practice, presumably because of the fact that only 1 of the features involved was relevant to the task. However, this instability was only observed for arbitrary, not highly overlearned combinations of simple geometric features and not for real objects (colored pictures of a banana and strawberry), where binding effects were strong and resistant to practice. These findings suggest that learning has no direct impact on the strength or resistance of bindings or on speed with which features are bound; however, learning does affect the amount of attention particular feature dimensions attract, which again can influence which features are considered in binding.


Cognitive Processing | 2010

The exploration of meditation in the neuroscience of attention and consciousness

Antonino Raffone; Narayanan Srinivasan

Many recent behavioral and neuroscientific studies have revealed the importance of investigating meditation states and traits to achieve an increased understanding of cognitive and affective neuroplasticity, attention and self-awareness, as well as for their increasingly recognized clinical relevance. The investigation of states and traits related to meditation has especially pronounced implications for the neuroscience of attention, consciousness, self-awareness, empathy and theory of mind. In this article we present the main features of meditation-based mental training and characterize the current scientific approach to meditation states and traits with special reference to attention and consciousness, in light of the articles contributed to this issue.


Cognitive Neurodynamics | 2007

Robust emergence of small-world structure in networks of spiking neurons

Hoi Fei Kwok; Peter Jurica; Antonino Raffone; Cees van Leeuwen

Spontaneous activity in biological neural networks shows patterns of dynamic synchronization. We propose that these patterns support the formation␣of a small-world structure—network connectivity␣optimal for distributed information processing. We␣present numerical simulations with connected Hindmarsh–Rose neurons in which, starting from random connection distributions, small-world networks evolve as a result of applying an adaptive rewiring rule. The rule connects pairs of neurons that tend fire in synchrony, and disconnects ones that fail to synchronize. Repeated application of the rule leads to small-world structures. This mechanism is robustly observed for bursting and irregular firing regimes.


Cognitive Processing | 2012

Cognitive reserve and its implications for rehabilitation and Alzheimer’s disease

Giulia Liberati; Antonino Raffone; Marta Olivetti Belardinelli

According to the Cognitive reserve hypothesis, several factors related to mental engagement, such as level of education, type of occupation, leisure activities and social network, appear to affect the risk of developing clinical dementia. The present article provides an overview of the studies that have investigated the effects of mental engagement and cognitive stimulation specifically on dementia of the Alzheimer’s type (AD). Mental training and cognitive stimulation interventions in AD have been shown to be useful in increasing patients’ ability in performing activities of daily living (ADL), allowing them to maintain relative independence. Since cognitive engagement and stimulation are known to modify the brain processes to perform tasks, by recruiting alternative and more efficient networks, this review is especially focused on cognitive rehabilitation in AD patients, which has been shown to improve their global functioning and cognition. This perspective stresses the idea that cognitive reserve is not a fixed factor, but can be continuously modified by life experiences, even when the brain is already affected by neuropathology.


Chaos | 2003

Dynamic synchronization and chaos in an associative neural network with multiple active memories

Antonino Raffone; Cees van Leeuwen

Associative memory dynamics in neural networks are generally based on attractors. Retrieval based on fixed-point attractors works if only one memory pattern is retrieved at the time, but cannot enable the simultaneous retrieval of more than one pattern. Stable phase-locking of periodic oscillations or limit cycle attractors leads to incorrect feature bindings if the simultaneously retrieved patterns share some of their features. We investigate retrieval dynamics of multiple active patterns in a network of chaotic model neurons. Several memory patterns are kept simultaneously active and separated from each other by a dynamic itinerant synchronization between neurons. Neurons representing shared features alternate their synchronization between patterns, thus multiplexing their binding relationships. Our model includes a mechanism for self-organized readout or decoding of memory pattern coherence in terms of short-term potentiation and short-term depression of synaptic weights.


Experimental Brain Research | 2008

Perceptual load affects exogenous spatial orienting while working memory load does not

Valerio Santangelo; Paola Finoia; Antonino Raffone; Marta Olivetti Belardinelli; Charles Spence

We examined whether or not increasing visual perceptual load or visual working memory (WM) load would affect the exogenous orienting of visuo-spatial attention, in order to assess whether or not exogenous orienting is genuinely automatic. In Experiment 1, we manipulated visual perceptual load by means of a central morphing shape that in some trials morphed into a particular target shape (a rectangle) that participants had to detect. In Experiment 2, the possibility that the presentation of any changing stimulus at fixation would eliminate exogenous orienting was ruled out, by presenting two alternating letters at fixation. In Experiment 3, we manipulated visual WM load by means of arrays consisting of three (low-load) or five (high-load) randomly located coloured squares. The participants had to remember these items in order to judge whether a cued square had been presented in the same or different colour at the end of each trial. In all the experiments, exogenous visuo-spatial attentional orienting was measured by means of an orthogonal spatial cuing task, in which the participants had to discriminate the elevation (up vs. down) of a visual target previously cued by a spatially nonpredictive visual cue. The results showed that increasing the perceptual load of the task eliminated the exogenous orienting of visuo-spatial attention. By contrast, increasing the WM load had no effect on spatial orienting. These results are discussed in terms of the light that they shed on claims regarding the automaticity of visuo-spatial exogenous orienting.


Consciousness and Cognition | 2010

A global workspace model for phenomenal and access consciousness

Antonino Raffone; Martina Pantani

Both the global workspace theory and Blocks distinction between phenomenal and access consciousness, are central in the current debates about consciousness and the neural correlates of consciousness. In this article, a unifying global workspace model for phenomenal and access consciousness is proposed. In the model, recurrent neural interactions take place in distinct yet interacting access and phenomenal brain loops. The effectiveness of feedback signaling onto sensory cortical maps is emphasized for the neural correlates of phenomenal consciousness. Two forms of top-down attention, attention for perception and attention for access, play differential roles for phenomenal and access consciousness. The model is implemented in a neural network form, with the simulation of single and multiple visual object processing, and of the attentional blink.

Collaboration


Dive into the Antonino Raffone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cees van Leeuwen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunjung Kim

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Giulia Liberati

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Simione

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf Veit

University of Tübingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge