Antonio Abate
Helmholtz-Zentrum Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio Abate.
Nature Communications | 2013
Tomas Leijtens; Giles E. Eperon; Sandeep Pathak; Antonio Abate; Michael M. Lee; Henry J. Snaith
The power conversion efficiency of hybrid solid-state solar cells has more than doubled from 7 to 15% over the past year. This is largely as a result of the incorporation of organometallic trihalide perovskite absorbers into these devices. But, as promising as this development is, long-term operational stability is just as important as initial conversion efficiency when it comes to the development of practical solid-state solar cells. Here we identify a critical instability in mesoporous TiO₂-sensitized solar cells arising from light-induced desorption of surface-adsorbed oxygen. We show that this instability does not arise in mesoporous TiO₂-free mesosuperstructured solar cells. Moreover, our TiO₂-free cells deliver stable photocurrent for over 1,000 h continuous exposure and operation under full spectrum simulated sunlight.
Journal of Physical Chemistry Letters | 2014
Henry J. Snaith; Antonio Abate; James M. Ball; Giles E. Eperon; Tomas Leijtens; Nakita K. Noel; Samuel D. Stranks; Jacob Tse-Wei Wang; Konrad Wojciechowski; Wei Zhang
Perovskite solar cells have rapidly risen to the forefront of emerging photovoltaic technologies, exhibiting rapidly rising efficiencies. This is likely to continue to rise, but in the development of these solar cells there are unusual characteristics that have arisen, specifically an anomalous hysteresis in the current-voltage curves. We identify this phenomenon and show some examples of factors that make the hysteresis more or less extreme. We also demonstrate stabilized power output under working conditions and suggest that this is a useful parameter to present, alongside the current-voltage scan derived power conversion efficiency. We hypothesize three possible origins of the effect and discuss its implications on device efficiency and future research directions. Understanding and resolving the hysteresis is essential for further progress and is likely to lead to a further step improvement in performance.
Science | 2016
Michael Saliba; Taisuke Matsui; Konrad Domanski; Ji-Youn Seo; Amita Ummadisingu; Shaik M. Zakeeruddin; Juan-Pablo Correa-Baena; Wolfgang Tress; Antonio Abate; Anders Hagfeldt; Michael Grätzel
Improving the stability of perovskite solar cells Inorganic-organic perovskite solar cells have poor long-term stability because ultraviolet light and humidity degrade these materials. Bella et al. show that coating the cells with a water-proof fluorinated polymer that contains pigments to absorb ultraviolet light and re-emit it in the visible range can boost cell efficiency and limit photodegradation. The performance and stability of inorganic-organic perovskite solar cells are also limited by the size of the cations required for forming a correct lattice. Saliba et al. show that the rubidium cation, which is too small to form a perovskite by itself, can form a lattice with cesium and organic cations. Solar cells based on these materials have efficiencies exceeding 20% for over 500 hours if given environmental protection by a polymer coating. Science, this issue pp. 203 and 206 The seemingly too small rubidium cation was successfully integrated into perovskite solar cells. All of the cations currently used in perovskite solar cells abide by the tolerance factor for incorporation into the lattice. We show that the small and oxidation-stable rubidium cation (Rb+) can be embedded into a “cation cascade” to create perovskite materials with excellent material properties. We achieved stabilized efficiencies of up to 21.6% (average value, 20.2%) on small areas (and a stabilized 19.0% on a cell 0.5 square centimeters in area) as well as an electroluminescence of 3.8%. The open-circuit voltage of 1.24 volts at a band gap of 1.63 electron volts leads to a loss in potential of 0.39 volts, versus 0.4 volts for commercial silicon cells. Polymer-coated cells maintained 95% of their initial performance at 85°C for 500 hours under full illumination and maximum power point tracking.
Science Advances | 2016
Dongqin Bi; Wolfgang Tress; M. Ibrahim Dar; Peng Gao; Jingshan Luo; Clementine Renevier; Kurt Schenk; Antonio Abate; Fabrizio Giordano; Juan-Pablo Correa Baena; Jean-David Decoppet; Shaik Mohammed Zakeeruddin; Mohammad Khaja Nazeeruddin; Michael Grätzel; Anders Hagfeldt
Researchers developed a perovskite solar cell with high power-conversion efficiency (>20%) and intense electroluminescence yield (0.5%). We report on a new metal halide perovskite photovoltaic cell that exhibits both very high solar-to-electric power-conversion efficiency and intense electroluminescence. We produce the perovskite films in a single step from a solution containing a mixture of FAI, PbI2, MABr, and PbBr2 (where FA stands for formamidinium cations and MA stands for methylammonium cations). Using mesoporous TiO2 and Spiro-OMeTAD as electron- and hole-specific contacts, respectively, we fabricate perovskite solar cells that achieve a maximum power-conversion efficiency of 20.8% for a PbI2/FAI molar ratio of 1.05 in the precursor solution. Rietveld analysis of x-ray diffraction data reveals that the excess PbI2 content incorporated into such a film is about 3 weight percent. Time-resolved photoluminescence decay measurements show that the small excess of PbI2 suppresses nonradiative charge carrier recombination. This in turn augments the external electroluminescence quantum efficiency to values of about 0.5%, a record for perovskite photovoltaics approaching that of the best silicon solar cells. Correspondingly, the open-circuit photovoltage reaches 1.18 V under AM 1.5 sunlight.
Energy and Environmental Science | 2014
Nakita K. Noel; Samuel D. Stranks; Antonio Abate; Christian Wehrenfennig; Simone Guarnera; Amir-Abbas Haghighirad; Aditya Sadhanala; Giles E. Eperon; Sandeep Pathak; Michael B. Johnston; Annamaria Petrozza; Laura M. Herz; Henry J. Snaith
Already exhibiting solar to electrical power conversion efficiencies of over 17%, organic–inorganic lead halide perovskite solar cells are one of the most promising emerging contenders in the drive to provide a cheap and clean source of energy. One concern however, is the potential toxicology issue of lead, a key component in the archetypical material. The most likely substitute is tin, which like lead, is also a group 14 metal. While organic–inorganic tin halide perovskites have shown good semiconducting behaviour, the instability of tin in its 2+ oxidation state has thus far proved to be an overwhelming challenge. Here, we report the first completely lead-free, CH3NH3SnI3 perovskite solar cell processed on a mesoporous TiO2 scaffold, reaching efficiencies of over 6% under 1 sun illumination. Remarkably, we achieve open circuit voltages over 0.88 V from a material which has a 1.23 eV band gap.
Nano Letters | 2014
Jacob Tse-Wei Wang; James M. Ball; Eva M. Barea; Antonio Abate; Jack A. Alexander-Webber; Jian Huang; Michael Saliba; Iván Mora-Seró; Juan Bisquert; Henry J. Snaith; R. J. Nicholas
The highest efficiencies in solution-processable perovskite-based solar cells have been achieved using an electron collection layer that requires sintering at 500 °C. This is unfavorable for low-cost production, applications on plastic substrates, and multijunction device architectures. Here we report a low-cost, solution-based deposition procedure utilizing nanocomposites of graphene and TiO2 nanoparticles as the electron collection layers in meso-superstructured perovskite solar cells. The graphene nanoflakes provide superior charge-collection in the nanocomposites, enabling the entire device to be fabricated at temperatures no higher than 150 °C. These solar cells show remarkable photovoltaic performance with a power conversion efficiency up to 15.6%. This work demonstrates that graphene/metal oxide nanocomposites have the potential to contribute significantly toward the development of low-cost solar cells.
ACS Nano | 2014
Nakita K. Noel; Antonio Abate; Samuel D. Stranks; Elizabeth S. Parrott; Victor M. Burlakov; Alain Goriely; Henry J. Snaith
Organic-inorganic metal halide perovskites have recently emerged as a top contender to be used as an absorber material in highly efficient, low-cost photovoltaic devices. Solution-processed semiconductors tend to have a high density of defect states and exhibit a large degree of electronic disorder. Perovskites appear to go against this trend, and despite relatively little knowledge of the impact of electronic defects, certified solar-to-electrical power conversion efficiencies of up to 17.9% have been achieved. Here, through treatment of the crystal surfaces with the Lewis bases thiophene and pyridine, we demonstrate significantly reduced nonradiative electron-hole recombination within the CH(3)NH(3)PbI(3-x)Cl(x) perovskite, achieving photoluminescence lifetimes which are enhanced by nearly an order of magnitude, up to 2 μs. We propose that this is due to the electronic passivation of under-coordinated Pb atoms within the crystal. Through this method of Lewis base passivation, we achieve power conversion efficiencies for solution-processed planar heterojunction solar cells enhanced from 13% for the untreated solar cells to 15.3% and 16.5% for the thiophene and pyridine-treated solar cells, respectively.
Nature Communications | 2015
Wei Zhang; Michael Saliba; David T. Moore; Sandeep Pathak; Maximilian T. Hörantner; Thomas Stergiopoulos; Samuel D. Stranks; Giles E. Eperon; Jack A. Alexander-Webber; Antonio Abate; Aditya Sadhanala; Shuhua Yao; Yulin Chen; Richard H. Friend; Lara A. Estroff; Ulrich Wiesner; Henry J. Snaith
To date, there have been a plethora of reports on different means to fabricate organic-inorganic metal halide perovskite thin films; however, the inorganic starting materials have been limited to halide-based anions. Here we study the role of the anions in the perovskite solution and their influence upon perovskite crystal growth, film formation and device performance. We find that by using a non-halide lead source (lead acetate) instead of lead chloride or iodide, the perovskite crystal growth is much faster, which allows us to obtain ultrasmooth and almost pinhole-free perovskite films by a simple one-step solution coating with only a few minutes annealing. This synthesis leads to improved device performance in planar heterojunction architectures and answers a critical question as to the role of the anion and excess organic component during crystallization. Our work paves the way to tune the crystal growth kinetics by simple chemistry.
Energy and Environmental Science | 2015
Juan Pablo Correa Baena; Ludmilla Steier; Wolfgang Tress; Michael Saliba; Stefanie Neutzner; Taisuke Matsui; Fabrizio Giordano; T. Jesper Jacobsson; Ajay Ram Srimath Kandada; Shaik M. Zakeeruddin; Annamaria Petrozza; Antonio Abate; Mohammad Khaja Nazeeruddin; Michael Grätzel; Anders Hagfeldt
The simplification of perovskite solar cells (PSCs), by replacing the mesoporous electron selective layer (ESL) with a planar one, is advantageous for large-scale manufacturing. PSCs with a planar TiO2 ESL have been demonstrated, but these exhibit unstabilized power conversion efficiencies (PCEs). Herein we show that planar PSCs using TiO2 are inherently limited due to conduction band misalignment and demonstrate, with a variety of characterization techniques, for the first time that SnO2 achieves a barrier-free energetic configuration, obtaining almost hysteresis-free PCEs of over 18% with record high voltages of up to 1.19 V.
Energy and Environmental Science | 2014
Konrad Wojciechowski; Michael Saliba; Tomas Leijtens; Antonio Abate; Henry J. Snaith
The ability to process amorphous or polycrystalline solar cells at low temperature (<150 °C) opens many possibilities for substrate choice and monolithic multijunction solar cell fabrication. Organometal trihalide perovskite solar cells have evolved rapidly over the last two years, and the CH3NH3PbX3 (X = Cl, I or Br) material is processed at low temperature. However the first embodiments of the solar cell were composed of high temperature processed (500 °C) compact and mesoporous layers of TiO2. The sintering of the mesoporous TiO2 has been negated by replacing this with a mesoporous insulating scaffold in the meso-superstructured solar cell (MSSC), yet the high temperature processed compact TiO2 layer still persists in the most efficient devices. Here we have realised a low temperature route for compact TiO2, tailored for perovskite MSSC operation. With our optimized formulation we demonstrate full sun solar power conversion efficiencies of up to 15.9% in an all low temperature processed solar cell.