Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Abellán is active.

Publication


Featured researches published by Antonio Abellán.


The Journal of Comparative Neurology | 2008

Histogenetic Compartments of the Mouse Centromedial and Extended Amygdala Based on Gene Expression Patterns during Development

Margarita García-López; Antonio Abellán; Isabel Legaz; John L.R. Rubenstein; Luis Puelles; Loreta Medina

The amygdala controls emotional and social behavior and regulates instinctive reflexes such as defense and reproduction by way of descending projections to the hypothalamus and brainstem. The descending amygdalar projections are suggested to show a cortico‐striato‐pallidal organization similar to that of the basal ganglia (Swanson [2000] Brain Res 886:113–164). To test this model we investigated the embryological origin and molecular properties of the mouse centromedial and extended amygdalar subdivisions, which constitute major sources of descending projections. We analyzed the distribution of key regulatory genes that show restricted expression patterns within the subpallium (Dlx5, Nkx2.1, Lhx6, Lhx7/8, Lhx9, Shh, and Gbx1), as well as genes considered markers for specific subpallial neuronal subpopulations. Our results indicate that most of the centromedial and extended amygdala is formed by cells derived from multiple subpallial subdivisions. Contrary to a previous suggestion, only the central—but not the medial—amygdala derives from the lateral ganglionic eminence and has striatal‐like features. The medial amygdala and a large part of the extended amygdala (including the bed nucleus of the stria terminalis) consist of subdivisions or cell groups that derive from subpallial, pallial (ventral pallium), or extratelencephalic progenitor domains. The subpallial part includes derivatives from the medial ganglionic eminence, the anterior peduncular area, and possibly a novel subdivision, called here commissural preoptic area, located at the base of the septum and related to the anterior commissure. Our study provides a molecular and morphological foundation for understanding the complex embryonic origins and adult organization of the centromedial and extended amygdala. J. Comp. Neurol. 506:46–74, 2008.


Seminars in Cell & Developmental Biology | 2009

Development and evolution of the pallium

Loreta Medina; Antonio Abellán

The neocortex is the most representative and elaborated structure of the mammalian brain and is related to the achievement of complex cognitive capabilities, which are disturbed following malformation or lesion. Searching for the evolutionary origin of this structure continues to be one of the most important and challenging questions in comparative neurobiology. However, this is extremely difficult because of the highly divergent evolution of the pallium in different vertebrates, which has obscured the comparison. Herein, we review developmental neurobiology data for trying to understand the genetic factors that define and underlie the parcellation of homologous pallial subdivisions in different vertebrates. According to these data, the pallium in all tetrapods parcellates during development into four major histogenetic subdivisions, which are homologous as fields across species. The neocortex derives from the dorsal pallium and, as such, is only comparable to the sauropsidian dorsal pallium (avian hyperpallium and lizard/turtle dorsal cortex). We also tried to identify developmental changes in phylogeny that may be responsible of pallial divergent evolution. In particular, we point out to evolutionary differences regarding the cortical hem (an important signaling center for pallial patterning, that also is a source of Cajal-Retzius cells, which are involved in cortical lamination), which may be behind the distinct organization of the pallium in mammals and non-mammals. In addition, we mention recent data suggesting a correlation between the appearance and elaboration of the subventricular zone (a new germinative cell layer of the developing neocortex), and the evolution of novel cell layers (the supragranular layers) and interneuron subtypes. Finally, we comment on epigenetic factors that modulate the developmental programs, leading to changes in the formation of functional areas in the pallium (within some constraints).


The Journal of Comparative Neurology | 2009

Subdivisions and derivatives of the chicken subpallium based on expression of LIM and other regulatory genes and markers of neuron subpopulations during development.

Antonio Abellán; Loreta Medina

Here we studied the combinatory expression patterns of nine developmental regulatory genes and six markers of different neuronal subpopulations in the telencephalic subpallium of developing chicken, from early embryos until hatching, in order to better understand the formation and organization of the basal telencephalon and the origin of its different cell groups. The genes analyzed include those encoding for: the transcription factors Islet1, Lhx6, Lhx7/8, Nkx2.1, and Pax6; the signaling protein Sonic hedgehog; the LIM‐only genes Lmo3 and Lmo4; the cell adhesion molecule cadherin‐8; markers of γ‐aminobutyric acid (GABA)ergic, cholinergic, or glutamatergic neurons; and markers of neuron subpopulations containing substance P, enkephalin, or neuropeptide Y. The combinatory expression patterns of these genes indicate that the chicken subpallium parcellates into eight molecularly different compartments during development (three striatal, three pallidal, and two preoptic subdivisions), and suggest that each compartment produces specific cell groups. Our data are particularly relevant for understanding the avian extended amygdala and suggest the existence of distinct central and medial extended amygdala complexes in the subpallium, as well as a pallial amygdalo‐hypothalamic cell corridor, which are comparable to homonymous complexes of mammals based on similar embryonic origin, molecular features, and some connectivity patterns. Our data also indicate that the dorsal and ventral parts of the chicken basal ganglia originate in different striatal and pallidal compartments, and suggest a massive migration of neurons from the pallidal compartment into the medial striatum, which may explain the existence of pallidal‐like cells within the medial striatum of birds. J. Comp. Neurol. 515:465–501, 2009.


The Journal of Comparative Neurology | 2011

Multiple telencephalic and extratelencephalic embryonic domains contribute neurons to the medial extended amygdala

Munisamy Bupesh; Isabel Legaz; Antonio Abellán; Loreta Medina

Dysfunctions in emotional control and social behavior are behind human neuropsychiatric disorders, some of which are associated with an alteration of amygdalar development. The medial extended amygdala is a key telencephalic center for control of social behavior, but very little is known about its development. We used in vitro migration assays for analyzing the origin of the neurons of the medial extended amygdala in mouse embryos (E13.5–E16.5). We compared the migration assays with immunofluorescence/immunohistochemistry for calbindin and radial glial fibers and with mRNA expression of several genetic markers of distinct forebrain subdivisions. We provide experimental evidence for multiple embryonic origins of the principal neurons of the medial extended amygdala. In particular, we provide novel evidence indicating that a major part of the neurons derives from a caudoventral pallidal subdivision (previously called or included as part of the anterior peduncular area), forming a cell corridor with similar molecular features (expression of Lhx6 and calbindin), connectivity, and function, which relates to reproductive behavior. We also provide novel experimental evidence indicating that the ventral pallium produces some neurons for the medial amygdala, which correlates with data from Lhx9 expression. Our results also confirm that some neurons of the medial extended amygdala originate in the preoptic area (our results indicate that these cells specifically originate in its commissural subdivision) and the supraoptoparaventricular domain of the hypothalamus. Our study helps to set up the foundations for a better understanding of medial amygdalar control of behavior in normal and abnormal conditions. J. Comp. Neurol. 519:1505–1525, 2011.


Brain Behavior and Evolution | 2011

Contribution of Genoarchitecture to Understanding Forebrain Evolution and Development, with Particular Emphasis on the Amygdala

Loreta Medina; Munisamy Bupesh; Antonio Abellán

The amygdala is a forebrain center involved in functions and behaviors that are critical for survival (such as control of the neuroendocrine system and homeostasis, and reproduction and fear/escape responses) and in cognitive functions such as attention and emotional learning. In mammals, the amygdala is highly complex, with multiple subdivisions, neuronal subtypes, and connections, making it very difficult to understand its functional organization and evolutionary origin. Since evolution is the consequence of changes that occurred in development, herein we review developmental data based on genoarchitecture and fate mapping in mammals (in the mouse model) and other vertebrates in order to identify its basic components and embryonic origin in different species and understand how they changed in evolution. In all tetrapods studied, the amygdala includes at least 4 components: (1) a ventral pallial part, characterized by expression of Lhx2 and Lhx9, that includes part of the basal amygdalar complex in mammals and a caudal part of the dorsal ventricular ridge in sauropsids and also produces a cell subpopulation of the medial amygdala; (2) a striatal part, characterized by expression of Pax6 and/or Islet1, which includes the central amygdala in different species; (3) a pallidal part, characterized by expression of Nkx2.1 and, in amniotes, Lhx6, which includes part of the medial amygdala, and (4) a hypothalamic part (derived from the supraoptoparaventricular domain or SPV), characterized by Otp and/or Lhx5 expression, which produces an important subpopulation of cells of the medial extended amygdala (medial amygdala and/or medial bed nucleus of the stria terminalis). Importantly, the size of the SPV domain increases upon reduction or lack of Nkx2.1 function in the hypothalamus. It appears that Nkx2.1 expression was downregulated in the alar hypothalamus during evolution to mammals, which may have produced an enlargement of SPV and the amygdalar cell subpopulation derived from it.


The Journal of Comparative Neurology | 2010

Similarities and differences in the forebrain expression of Lhx1 and Lhx5 between chicken and mouse: Insights for understanding telencephalic development and evolution

Antonio Abellán; Baptiste Vernier; Sylvie Rétaux; Loreta Medina

We compared expression of the paralogous LIM‐homeodomain genes Lhx1 and Lhx5 in the developing rostral forebrain of mouse and chicken. Both genes are expressed in similar patterns in the septum, preoptic region, and related areas of the basal telencephalon, including the medial septum/diagonal band nuclei and the medial extended amygdala. In the septum, the expression of Lhx5 and Lhx1 appears to be specifically related to the pallial septum and its derivatives in mouse and chicken, and may produce the glutamatergic neurons observed in the diagonal band/medial septum nuclei. The preoptic area expresses both Lhx1 and Lhx5 in mouse and chicken, and appears to produce γ‐aminobutyric acid (GABA)ergic, glutamatergic, and cholinergic cells for the preoptic region and basal telencephalon. In addition, in mouse and chicken Lhx5 is expressed in two extratelencephalic domains that appear to contribute Lhx5‐expressing cells to the basal telencephalon, including the supraoptoparaventricular hypothalamic domain and the eminentia thalami. In contrast, there are striking differences in the pallial expression of Lhx1 and Lhx5 between mouse and chicken. Both genes are expressed in Cajal‐Retzius cells, and Lhx5 is also present in most pallial sources of Cajal‐Retzius cells (including the cortical hem and retrobulbar area) and in the olfactory bulbs in the mouse. In contrast, putative Cajal‐Retzius cells, the retrobulbar area, and the olfactory bulb of chicken do not express the paralog genes cLhx1/cLhx5. Moreover, the cortical hem—although it expresses cLhx5—is very tiny in chicken. We discuss the consequences of these differences in Lhx1/Lhx5 expression between mouse and chicken for pallial/cortical evolution. J. Comp. Neurol. 518:3512–3528, 2010.


The Journal of Comparative Neurology | 2009

Olfactory and amygdalar structures of the chicken ventral pallium based on the combinatorial expression patterns of LIM and other developmental regulatory genes

Antonio Abellán; Isabel Legaz; Baptiste Vernier; Sylvie Rétaux; Loreta Medina

We compared the combinatorial expression patterns of several LIM domain‐containing regulatory genes in the ventrolateral pallium of mouse and chicken, in order to identify the homologues of the ventral pallial amygdala and other olfactory structures in birds. Lmo3, Lmo4, Lhx2, and Lhx9 showed comparable expression patterns in the telencephalon of mouse and chicken, which allowed distinction of the ventrolateral pallium and, particularly, the ventral pallial amygdala and entorhinal cortex. Lmo3 was expressed in most of the ventrolateral pallium in both species, including, in chicken, the piriform cortex and dorsal ventricular ridge (mesopallium, nidopallium, and arcopallium) and, in mouse, the piriform cortex, most of the claustral complex, and the pallial amygdala. Lhx9 was differentially expressed in the ventral pallium, where it was restricted to its rostral (olfactory bulb) and caudal (amygdalar and entorhinal) poles. In the caudal pole, expression of Lhx9 overlapped that of its paralog Lhx2. According to these expression patterns, the chicken ventral pallial amygdala appears to include the caudal dorsolateral pallium, the caudal nidopallium, and the whole arcopallium, and each one relates to a distinct ventricular sector. Finally, the combinatorial expression patterns of Lmo3, Lhx9, and Lmo4 distinguished four distinct subdivisions in the superficial, olfactorecipient area of the chicken ventral pallium, which appear comparable to the piriform, entorhinal, amygdalopiriform, and amygdalar cortices of mammals. The results are discussed in the context of the two existing, opposite views on the homology of the dorsal ventricular ridge of sauropsids and in terms of the evolution of pallial derivatives. J. Comp. Neurol. 516:166–186, 2009.


The Journal of Comparative Neurology | 2011

Genetic and experimental evidence supports the continuum of the central extended amygdala and a mutiple embryonic origin of its principal neurons

Munisamy Bupesh; Antonio Abellán; Loreta Medina

The central extended amygdala is the major output center for telencephalic control of ingestion, fear responses, stress, and anxiety. In spite of the abundant data supporting the similarity in neurochemistry, connections, and function along the extended amygdala, embryological support for this continuum is lacking. By using a combination of in vitro migration assays, in situ hybridization, and immunostaining, here we show that its major components, including central amygdala and lateral bed nucleus of the stria terminalis (BST), are mosaics formed by different proportions of dorsal lateral ganglionic eminence (LGE)‐, ventral LGE‐, and medial ganglionic eminence (MGE)‐derived principal neurons. The dorsal LGE produces Pax6‐expressing neurons that primarily populate lateral parts of the central extended amygdala, including the capsular and part of lateral central amygdala, but also produces a few cells for the lateral BST. Based on correlation with preproenkephalin, many of these cells are likely enkephalinergic. The ventral LGE produces Islet1‐expressing neurons that populate primarily the central and medial parts of the central amygdala but also produces numerous neurons for the lateral BST. Correlation with corticotropin‐releasing factor suggests that these neurons express this neuropeptide. The MGE produces the majority of neurons of the lateral BST, but its ventrocaudal subdivision also produces an important subpopulation of projection neurons containing somatostatin for medial aspects of the central amygdala. Thus, distinct principal neurons originate in different embryonic domains, but the same domains contribute neurons to most subdivisions of the central extended amygdala, which may explain the similarity in neurochemistry and connections along the corridor. J. Comp. Neurol. 519:3507–3531, 2011.


Frontiers in Neuroanatomy | 2014

Combinatorial expression of Lef1, Lhx2, Lhx5, Lhx9, Lmo3, Lmo4, and Prox1 helps to identify comparable subdivisions in the developing hippocampal formation of mouse and chicken

Antonio Abellán; Ester Desfilis; Loreta Medina

We carried out a study of the expression patterns of seven developmental regulatory genes (Lef1, Lhx2, Lhx9, Lhx5, Lmo3, Lmo4, and Prox1), in combination with topological position, to identify the medial pallial derivatives, define its major subdivisions, and compare them between mouse and chicken. In both species, the medial pallium is defined as a pallial sector adjacent to the cortical hem and roof plate/choroid tela, showing moderate to strong ventricular zone expression of Lef1, Lhx2, and Lhx9, but not Lhx5. Based on this, the hippocampal formation (indusium griseum, dentate gyrus, Ammons horn fields, and subiculum), the medial entorhinal cortex, and part of the amygdalo-hippocampal transition area of mouse appeared to derive from the medial pallium. In the chicken, based on the same position and gene expression profile, we propose that the hippocampus (including the V-shaped area), the parahippocampal area (including its caudolateral part), the entorhinal cortex, and the amygdalo-hippocampal transition area are medial pallial derivatives. Moreover, the combinatorial expression of Lef1, Prox1, Lmo4, and Lmo3 allowed the identification of dentate gyrus/CA3-like, CA1/subicular-like, and medial entorhinal-like comparable sectors in mouse and chicken, and point to the existence of mostly conserved molecular networks involved in hippocampal complex development. Notably, while the mouse medial entorhinal cortex derives from the medial pallium (similarly to the hippocampal formation, both being involved in spatial navigation and spatial memory), the lateral entorhinal cortex (involved in processing non-spatial, contextual information) appears to derive from a distinct dorsolateral caudal pallial sector.


Brain Research Bulletin | 2008

Expression of cLhx6 and cLhx7/8 suggests a pallido-pedunculo-preoptic origin for the lateral and medial parts of the avian bed nucleus of the stria terminalis.

Antonio Abellán; Loreta Medina

We investigated the origin of the avian bed nucleus of the stria terminalis (BST) and other parts of the avian subpallial amygdala, by studying the expression of the LIM-homeobox chick genes Lhx6 (cLhx6) and Lhx7/8 (cLhx7/8) in the embryonic chicken telencephalon. Our results indicate that these genes are expressed in a subpallial subdomain partially overlapping the expression of Nkx2.1, which includes pallidal, peduncular, commissural preoptic and pallidoseptal subdivisions comparable to those of mammals. The lateral and medial parts of the avian BST express cLhx6 and/or cLhx7/8, suggesting that they derive from the Nkx2.1-expressing subpallial domain. Our results indicate that the avian lateral BST (BSTL) contains two components, a dorsal part rich in cLhx6 and lacking cLhx7/8 expression that may derive from the pallidal subdivision, and a ventral part showing moderate or light expression of cLhx6 and cLhx7/8, which may derive from the peduncular subdivision. Moreover, the medial BST (BSTM1 and BSTM2) shows moderate to strong expression of cLhx6 and very strong expression of cLhx7/8 throughout development, and appears to derive from both the peduncular and the commissural preoptic subdivisions. Based on this, the avian dorsal BSTL appears comparable to the mammalian BSTL, whereas the avian ventral BSTL and at least part of BSTM may be comparable to the anterior and posteromedial parts of the mammalian BSTM. We also identified a ventrolateral portion of BSTM (BSTM3) and other cell corridors expressing cLhx6 and/or cLhx7/8 in chicken and propose their homology with specific parts of the extended amygdala of mammals.

Collaboration


Dive into the Antonio Abellán's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvie Rétaux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Verner P. Bingman

Bowling Green State University

View shared research outputs
Top Co-Authors

Avatar

Baptiste Vernier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge