Antonio Argiolas
University of Cagliari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio Argiolas.
Nature | 1976
G. Di Chiara; M.L. Porceddu; L. Vargiu; Antonio Argiolas; G.L. Gessa
APOMORPHINE, a direct stimulant of dopamine (DA) receptors, and L-dopa, the direct precursor of DA, have a biphasic action on behaviour; in low doses they decrease motor activity, while in higher doses they cause hyper-motility and sterotypy1–3.
Neuroscience & Biobehavioral Reviews | 1995
Maria Rosaria Melis; Antonio Argiolas
Among central neurotransmitters involved in the control of sexual behavior, dopamine is certainly one of the most extensively studied. Our attempt to review old and recent neuropharmacological, biochemical, electrophysiological, and psychobiological studies performed so far only in rats, monkeys, and humans, provides evidence that dopamine through its different neuronal systems and receptor subtypes plays different roles in the control of several aspects of sexual behavior. In fact, while the nigrostriatal system is necessary for the control of the sensory-motor coordination required for copulation, the mesolimbic-mesocortical system plays a key role in the preparatory phase of the behavior, mainly in sexual arousal, motivation and possibly reward. Conversely, the incertohypothalamic system plays a major role in the consummation of the behavior, mainly in seminal emission and erectile performance, but evidence for its involvement in sexual motivation also exists. The dopaminergic receptors playing the major role in the control of male sexual behavior belong to the D2 receptor subtype. However a D1/D2 receptor interaction is well established and an opposite role for D1 and D2 receptors in the preoptic area suggested. Despite some differences, most studies show that treatments that increase or decrease, respectively, brain dopaminergic activity improve or worsen, respectively, several parameters of copulatory activity, supporting a facilitatory role of dopamine in male sexual behavior. In contrast, no conclusion can be deduced from the available studies on the role of central dopaminergic systems in the control of proceptivity and receptivity, the two main components of female sexual behavior.
Life Sciences | 1978
Fabio Fadda; Antonio Argiolas; Maria Rosaria Melis; A.H. Tissari; Pierluigi Onali; G.L. Gessa
Abstract The effect of electrical foot shock stress on dopamine and DOPAC levels was examined in the frontal cortex, nucleus accumbens, striatum, substantia nigra and medial basal hypothalamus of rats. DA content did not change after stress in any of the structures analyzed except in the substantia nigra in which DA level decreased by about 35% following 20, 60 or 180 min of stress. DOPAC level did not change in the striatum, medial basal hypothalamus and substantia nigra, but increased in the frontal cortex and in n. accumbens by about 75% and 40%, respectively. Pretreatment with diazepam, but not with pentobarbital, prevented stress-induced increased in DOPAC levels.
Neuroscience & Biobehavioral Reviews | 1991
Antonio Argiolas; Gian Luigi Gessa
Oxytocin, the peptide well-known for its hormonal role in parturition and lactation, is present in several extrahypothalamic brain areas besides the neurohypophyseal system. The peptide is found in neurons which send their projections to brain areas containing specific oxytocin-binding sites. Oxytocin is also released from its synapses in a calcium-dependent fashion and may be the precursor of potent behaviorally active neuropeptides. These findings suggest that this ancient neuropeptide acts as a neurotransmitter in the central nervous system. We have attempted to review the most recent behavioral, morphological, electrophysiological and neurochemical studies providing evidence that oxytocin plays an important role in the expression of central functions, such as maternal behavior, sexual behavior (penile erection, lordosis and copulatory behavior), yawning, memory and learning, tolerance and dependence mechanisms, feeding, grooming, cardiovascular regulation and thermoregulation.
Brain Research | 1987
Maria Rosaria Melis; Antonio Argiolas; Gian Luigi Gessa
Microinjection of the dopamine (DA) agonist apomorphine into the paraventricular nucleus of the hypothalamus (PVN) induced penile erection and yawning in rats. A significant effect was elicited by a dose of apomorphine as low as 5 ng. The symptomatology usually began within 5 min after the microinjection, lasted for 30-50 min, and was identical to that induced by the systemic administration of the drug. Stereotypy and hypermotility were never observed after apomorphine microinjection into the PVN, even at the highest dose tested (1 microgram). Microinjections of the same doses of apomorphine into the hypothalamic ventromedial and dorsomedial nucleus, preoptic area, caudate nucleus, nucleus accumbens and substantia nigra, were ineffective. LY 171555, a specific D2 Da receptor agonist, and (+)-3-PPP, but not (-)-3-PPP nor the specific D1 DA receptor agonist SKF 38393, were as effective as apomorphine when injected into the PVN. Apomorphine-induced penile erection and yawning were antagonized by pretreatment with neuroleptic drugs, such as haloperidol, (-)-sulpiride, a specific D2 DA antagonist, and SCH 23390, a specific D1 DA antagonist. The present results suggest that the PVN is the brain area where D2 DA agonists act to induce penile erection and yawning. Moreover, since the PVN contains the cell bodies of a group of incerto-hypothalamic DA neurons, the above results suggest for the first time a possible involvement of the incerto-hypothalamic DA system in the expression of penile erection and yawning.
Life Sciences | 1979
Gino Serra; Antonio Argiolas; V. Klimek; Fabio Fadda; G.L. Gessa
Abstract In control rats small doses of apomorphine (25 to 100 μg/kg) decreased motor activity and reduced DOPAC content in the caudate nucleus. A larger dose (500 μg/kg) increased motor activity and elicited stereotypy. Chronic treatment with imipramine, amitryptiline and mianserine (10, 10 and 2.5 mg/kg twice daily for 10 days respectively) counteracted or reversed the effect of small doses of apomorphine on motor activity, left DOPAC content unchanged and potentiated the central stimulant response to the larger dose of apomorphine. Changes in apomorphine responses were observed after ten but not after two days of imipramine treatment and persisted unaltered up to 4 days after imipramine withdrawal. It is suggested that chronic treatment with antidepressants induces persistent subsensitivity in presynaptic dopamine receptors. The relevance of the findings in the therapeutic effect of these drugs is discussed.
European Journal of Pharmacology | 1998
Antonio Argiolas; Maria Rosaria Melis
Yawning is a phylogenetically old, stereotyped event that occurs alone or associated with stretching and/or penile erection in humans and in animals from reptiles to birds and mammals under different conditions. Although its physiological function is still unknown, yawning is under the control of several neurotransmitters and neuropeptides at the central level as this short overview of the literature on the neurochemistry of yawning shows. Among these substances, the best known are dopamine, excitatory amino acids, acetylcholine, serotonin, nitric oxide, adrenocorticotropic hormone-related peptides and oxytocin, that facilitate yawning and opioid peptides that inhibit this behavioral response. Some of the above compounds interact in the paraventricular nucleus of the hypothalamus to control yawning. This hypothalamic nucleus contains the cell bodies of oxytocinergic neurons projecting to extra-hypothalamic brain areas that play a key role in the expression of this behavioral event. When activated by dopamine, excitatory amino acids and oxytocin itself, these neurons facilitate yawning by releasing oxytocin at sites distant form the paraventricular nucleus, i.e. the hippocampus, the pons and/or the medulla oblongata. Conversely, activation of these neurons by dopamine, oxytocin or excitatory amino acids, is antagonized by opioid peptides, that, in turn, prevent the yawning response. The activation and inhibition, respectively of these oxytocinergic neurons is related to a concomitant increase and decrease, respectively, of paraventricular nitric oxide synthase activity. However, other neuronal systems in addition to the central paraventricular oxytocinergic neurons are involved in the control of yawning, since they do not seem to be involved in the expression of yawning induced by the stimulation of acetylcholine or serotoninergic receptors, nor by adrenocorticotropic hormone (ACTH) and related peptides. Nitric oxide is also involved in the induction of yawning by the latter compounds and neuronal links, for instance between dopamine and acetylcholine and dopamine and serotonin, seem to be involved in the yawning response. Finally, other neurotransmitters, i.e. gamma-aminobutyric acid (GABA) and noradrenaline, and neuropeptides, i.e. neurotensin and luteinizing hormone-releasing hormone (LH-RH), influence this behavioral response. In conclusion, in spite of some recent progress, little is known of, and more has to be done to identify, the neurochemical mechanisms underlying yawning at the central level.
Brain Research | 1986
Miriam Melis; Antonio Argiolas; G.L. Gessa
The effect of NG-nitro-L-arginine methyl ester (NAME), a potent inhibitor of nitric oxide (NO) synthase, injected into different brain areas on penile erection and yawning induced by apomorphine or oxytocin was studied in male rats. The compound was found to be able to prevent the above behavioral responses dose dependently when injected into the paraventricular nucleus of the hypothalamus (PVN), but not in the caudate nucleus, medial septum, preoptic area, and the CA1 field of the hippocampus. When injected in the PVN, 5 micrograms of NAME induced a 30% reduction of apomorphine and oxytocin responses, while 20 micrograms induced an almost complete reduction. The effect of NAME seems to be related to the inhibition of guanylate cyclase secondary to the prevention of NO formation, because a dose-dependent reduction of apomorphine and oxytocin responses was obtained also with the inhibitor of guanylate cyclase methylene blue injected intracerebroventricularly (100-400 micrograms ICV), but not into the PVN. The results provide further support for a neurotransmitter role of central NO in the control of penile erection and yawning.
Brain Research | 1987
Antonio Argiolas; Miriam Melis; Alessandro Mauri; G.L. Gessa
The effect of electrolytic lesion of the paraventricular nucleus of the hypothalamus (PVN) on yawning and penile erection induced by apomorphine, oxytocin and adrenocorticotropic hormone (ACTH1-24) was studied in male rats. In sham-operated rats, apomorphine (50 micrograms/kg s.c.), oxytocin (30 ng i.c.v.), and ACTH1-24 (10 micrograms i.c.v.) significantly increased the number of yawning and penile erection episodes. In PVN-lesioned rats, apomorphine- and oxytocin-, but not ACTH-induced responses were strongly reduced. These results confirm our previous observations showing that the PVN has a crucial role in the expression of yawning and penile erection induced by dopamino-mimetic drugs and oxytocin, and suggest that ACTH-derived peptides induce the above responses by a mechanism not involving PVN hypothalamic dopamine or oxytocin.
Neuroscience & Biobehavioral Reviews | 1999
Antonio Argiolas
Abstract Many neuropeptides are involved in the control of sexual behaviour at the central level. Among these, the most studied are adrenocorticotropin, α-melanocyte stimulating hormone, oxytocin and opioid peptides. This attempt to review old and new neuropharmacological, biochemical and psychobiological studies in this field, shows that all these neuropeptides apparently facilitate sexual behaviour, except for opioid peptides, which inhibit sexual performance, in most of the species studied so far (rats, mice, monkeys and humans). However, gonadotropin-releasing hormone, corticotropin releasing factor, neuropeptide Y, galanin, cholecystokinin, substance P and vasoactive intestinal peptide may be also involved in the control of sexual behaviour. Apparently, corticotropin releasing factor, neuropeptide Y and cholecystokinin inhibit, while substance P and vasoactive intestinal peptide facilitate, sexual behaviour. In contrast, gonadotropin-releasing hormone has been reported to exert a facilitative, inhibitory or no effect at all on sexual behaviour. Galanin was also shown either to facilitate or inhibit sexual behaviour. The above-mentioned putative role of the neuropeptides in sexual behaviour derives mainly from studies done in rats. In these studies, neuropeptides, their antisera or drugs that act as agonists or antagonists of neuropeptide receptors, were tested for their effect on sexual behaviour after systemic, intracerebroventricular, or intracerebral administration. The latter were infused into brain areas relevant for sexual behaviour, such as the medial preoptic area, and the ventromedial and paraventricular nuclei of the hypothalamus. The above studies show that little information is available on the mechanisms by which neuropeptides influence sexual behaviour. Also unclear is whether the above neuropeptides influence the anticipatory phase (sexual arousal and/or motivation) or the consummatory phase (performance) of sexual behaviour, except for opioid peptides. New information about the role of neuropeptides may come from the application of molecular biology and genetic manipulation techniques to the study of sexual behaviour. Of these, FOS protein determination, antisense oligonucleotides aimed at the neutralisation of neuropeptide and/or neuropeptide receptor mRNAs in specific brain areas, and gene ablation seem the most promising. Although still in the early stages, it is likely that these methodologies will provide new insights into the role of neuropeptides in the control of sexual behaviour.