Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Cabal is active.

Publication


Featured researches published by Antonio Cabal.


Journal of Bone and Mineral Research | 2014

Effects of Odanacatib on the Radius and Tibia of Postmenopausal Women: Improvements in Bone Geometry, Microarchitecture, and Estimated Bone Strength

Angela M. Cheung; Sharmila Majumdar; Kim Brixen; Roland Chapurlat; Thomas Fuerst; Klaus Engelke; Bernard J. Dardzinski; Antonio Cabal; Nadia Verbruggen; Shabana Ather; Elizabeth Rosenberg; Anne E. de Papp

The cathepsin K inhibitor odanacatib (ODN), currently in phase 3 development for postmenopausal osteoporosis, has a novel mechanism of action that reduces bone resorption while maintaining bone formation. In phase 2 studies, odanacatib increased areal bone mineral density (aBMD) at the lumbar spine and total hip progressively over 5 years. To determine the effects of ODN on cortical and trabecular bone and estimate changes in bone strength, we conducted a randomized, double‐blind, placebo‐controlled trial, using both quantitative computed tomography (QCT) and high‐resolution peripheral (HR‐p)QCT. In previously published results, odanacatib was superior to placebo with respect to increases in trabecular volumetric BMD (vBMD) and estimated compressive strength at the spine, and integral and trabecular vBMD and estimated strength at the hip. Here, we report the results of HR‐pQCT assessment. A total of 214 postmenopausal women (mean age 64.0 ± 6.8 years and baseline lumbar spine T‐score –1.81 ± 0.83) were randomized to oral ODN 50 mg or placebo, weekly for 2 years. With ODN, significant increases from baseline in total vBMD occurred at the distal radius and tibia. Treatment differences from placebo were also significant (3.84% and 2.63% for radius and tibia, respectively). At both sites, significant differences from placebo were also found in trabecular vBMD, cortical vBMD, cortical thickness, cortical area, and strength (failure load) estimated using finite element analysis of HR‐pQCT scans (treatment differences at radius and tibia = 2.64% and 2.66%). At the distal radius, odanacatib significantly improved trabecular thickness and bone volume/total volume (BV/TV) versus placebo. At a more proximal radial site, odanacatib attenuated the increase in cortical porosity found with placebo (treatment difference = –7.7%, p = 0.066). At the distal tibia, odanacatib significantly improved trabecular number, separation, and BV/TV versus placebo. Safety and tolerability were similar between treatment groups. In conclusion, odanacatib increased cortical and trabecular density, cortical thickness, aspects of trabecular microarchitecture, and estimated strength at the distal radius and distal tibia compared with placebo.


Bone | 2013

Effect of odanacatib on bone turnover markers, bone density and geometry of the spine and hip of ovariectomized monkeys: A head-to-head comparison with alendronate

Donald S. Williams; Paul J. McCracken; Mona Purcell; Maureen Pickarski; Parker D. Mathers; Alan T. Savitz; John Szumiloski; Richa Y. Jayakar; Sangeetha Somayajula; Stephen Krause; Keenan Brown; Christopher T. Winkelmann; Boyd B. Scott; Lynn Cook; Sherri L. Motzel; Richard Hargreaves; Jeffrey L. Evelhoch; Antonio Cabal; Bernard J. Dardzinski; Thomas N. Hangartner; Le T. Duong

Odanacatib (ODN) is a selective and reversible Cathepsin K (CatK) inhibitor currently being developed as a once weekly treatment for osteoporosis. Here, effects of ODN compared to alendronate (ALN) on bone turnover, DXA-based areal bone mineral density (aBMD), QCT-based volumetric BMD (vBMD) and geometric parameters were studied in ovariectomized (OVX) rhesus monkeys. Treatment was initiated 10 days after ovariectomy and continued for 20 months. The study consisted of four groups: L-ODN (2 mg/kg, daily p.o.), H-ODN (8/4 mg/kg daily p.o.), ALN (15 μg/kg, twice weekly, s.c.), and VEH (vehicle, daily, p.o.). L-ODN and ALN doses were selected to approximate the clinical exposures of the ODN 50-mg and ALN 70-mg once-weekly, respectively. L-ODN and ALN effectively reduced bone resorption markers uNTx and sCTx compared to VEH. There was no additional efficacy with these markers achieved with H-ODN. Conversely, ODN displayed inversely dose-dependent reduction of bone formation markers, sP1NP and sBSAP, and L-ODN reduced formation to a lesser degree than ALN. At month 18 post-OVX, L-ODN showed robust increases in lumbar spine aBMD (11.4%, p<0.001), spine trabecular vBMD (13.7%, p<0.001), femoral neck (FN) integral (int) vBMD (9.0%, p<0.001) and sub-trochanteric proximal femur (SubTrPF) int vBMD, (6.4%, p<0.001) compared to baseline. L-ODN significantly increased FN cortical thickness (Ct.Th) and cortical bone mineral content (Ct.BMC) by 22.5% (p<0.001) and 21.8% (p<0.001), respectively, and SubTrPF Ct.Th and Ct.BMC by 10.9% (p<0.001) and 11.3% (p<0.001) respectively. Compared to ALN, L-ODN significantly increased FN Ct. BMC by 8.7% (p<0.05), and SubTrPF Ct.Th by 7.6% (p<0.05) and Ct.BMC by 6.2% (p<0.05). H-ODN showed no additional efficacy compared to L-ODN in OVX-monkeys in prevention mode. Taken together, the results from this study have demonstrated that administration of ODN at levels which approximate clinical exposure in OVX-monkeys had comparable efficacy to ALN in DXA-based aBMD and QCT-based vBMD. However, FN cortical mineral content clearly demonstrated superior efficacy of ODN versus ALN in this model of estrogen-deficient non-human primates.


Bone | 2013

High-resolution peripheral quantitative computed tomography and finite element analysis of bone strength at the distal radius in ovariectomized adult rhesus monkey demonstrate efficacy of odanacatib and differentiation from alendronate

Antonio Cabal; Richa Y. Jayakar; Swanand Sardesai; Eual A. Phillips; John Szumiloski; Diane Posavec; Parker D. Mathers; Alan T. Savitz; Boyd B. Scott; Christopher T. Winkelmann; Sherri L. Motzel; Lynn Cook; Richard Hargreaves; Jeffrey L. Evelhoch; Bernard J. Dardzinski; Thomas N. Hangartner; Paul J. McCracken; Le T. Duong; Donald S. Williams

Translational evaluation of disease progression and treatment response is critical to the development of therapies for osteoporosis. In this study, longitudinal in-vivo monitoring of odanacatib (ODN) treatment efficacy was compared to alendronate (ALN) in ovariectomized (OVX) non-human primates (NHPs) using high-resolution peripheral computed tomography (HR-pQCT). Treatment effects were evaluated using several determinants of bone strength, density and quality, including volumetric bone mineral density (vBMD), three-dimensional structure, finite element analysis (FEA) estimated peak force and biomechanical properties at the ultradistal (UD) radius at baseline, 3, 6, 9, 12, and 18 months of dosing in three treatment groups: vehicle (VEH), low ODN (2 mg/kg/day, L-ODN), and ALN (30 μg/kg/week). Biomechanical axial compression tests were performed at the end of the study. Bone strength estimates using FEA were validated by ex-vivo mechanical compression testing experiments. After 18months of dosing, L-ODN demonstrated significant increases from baseline in integral vBMD (13.5%), cortical thickness (24.4%), total bone volume fraction BV/TV (13.5%), FEA-estimated peak force (26.6%) and peak stress (17.1%), respectively. Increases from baseline for L-ODN at 18 months were significantly higher than that for ALN in DXA-based aBMD (7.6%), cortical thickness (22.9%), integral vBMD (12.2%), total BV/TV (10.1%), FEA peak force (17.7%) and FEA peak stress (11.5%), respectively. These results demonstrate a superior efficacy of ODN treatment compared to ALN at the UD radii in ovariectomized NHPs.


Bone | 2012

Evaluation of high-resolution peripheral quantitative computed tomography, finite element analysis and biomechanical testing in a pre-clinical model of osteoporosis: a study with odanacatib treatment in the ovariectomized adult rhesus monkey.

Richa Y. Jayakar; Antonio Cabal; John Szumiloski; Swanand Sardesai; Eual A. Phillips; Andres Laib; Boyd B. Scott; Maureen Pickarski; Le T. Duong; Christopher T. Winkelmann; Paul J. McCracken; Richard Hargreaves; Thomas N. Hangartner; Donald S. Williams

This study aimed to validate finite element analysis (FEA) estimation of strength, identify high-resolution peripheral quantitative computed tomography (HR-pQCT) measures correlating with strength, and evaluate the precision of HR-pQCT measurements to longitudinally monitor effects of osteoporosis treatment in ovariectomized (OVX) non-human primates (NHPs). HR-pQCT images were acquired in three groups of NHPs: Intact (n=10), OVX-odanacatib treated (OVX-ODN 30 mg/kg, n=10) and OVX-vehicle treated (OVX-Veh, n=10) at the ultradistal (UD) and distal 1/3 radii and tibia at 12, 16 and 20 months. FEA estimates of bone strength using the Pistoia criterion were validated by ex-vivo mechanical compression (r(2)=0.95) of the UD radius. Single linear regressions of FEA-determined ultimate stress showed high correlation with HR-pQCT derived parameters: integral vBMD (r(2)=0.86), bone volume fraction (r(2)=0.84) and cortical thickness (r(2)=0.79). Precision of HR-pQCT measurements, obtained from an excised radius and tibia, showed low variation (CV=0.005%-5.6%) and helped identify possible sources of error. Comparison of OVX-Veh and Intact groups showed decreases in bone parameters demonstrating trends consistent with bone loss. Comparison of OVX-ODN and OVX-Veh groups showed a treatment effect with increases in bone parameters: integral vBMD (477±27 vs. 364±22 mgHA/cm(3)) and cortical thickness (Ct.Th) (0.90±0.07 vs. 0.64±0.04 mm) at the UD radius, Ct.Th (2.15±0.28 vs. 1.56±0.08 mm) at the distal 1/3 radius. Axial compression peak stress calculated and obtained experimentally showed the OVX-ODN group was 33% stronger than the OVX-Veh group. We conclude that HR-pQCT and FEA serve as robust techniques to longitudinally monitor bone parameters and strength in NHPs.


Journal of Bone and Mineral Research | 2013

A semimechanistic model of the time‐course of release of PTH into plasma following administration of the calcilytic JTT‐305/MK‐5442 in humans

Antonio Cabal; Khamir Mehta; David S. Ross; Rajiv P. Shrestha; Wendy Comisar; Andrew Denker; Sudhakar Pai; Tomohiro Ishikawa

JTT‐305/MK‐5442 is a calcium‐sensing receptor (CaSR) allosteric antagonist being investigated for the treatment of osteoporosis. JTT‐305/MK‐5442 binds to CaSRs, thus preventing receptor activation by Ca2+. In the parathyroid gland, this results in the release of parathyroid hormone (PTH). Sharp spikes in PTH secretion followed by rapid returns to baseline are associated with bone formation, whereas sustained elevation in PTH is associated with bone resorption. We have developed a semimechanistic, nonpopulation model of the time‐course relationship between JTT‐305/MK‐5442 and whole plasma PTH concentrations to describe both the secretion of PTH and the kinetics of its return to baseline levels. We obtained mean concentration data for JTT‐305/MK‐5442 and whole PTH from a multiple dose study in U.S. postmenopausal women at doses of 5, 10, 15, and 20 mg. We hypothesized that PTH is released from two separate sources: a reservoir that is released rapidly (within minutes) in response to reduction in Ca2+ binding, and a second source released more slowly following hours of reduced Ca2+ binding. We modeled the release rates of these reservoirs as maximum pharmacologic effect (Emax) functions of JTT‐305/MK‐5442 concentration. Our model describes both the dose‐dependence of PTH time of occurrence for maximum drug concentration (Tmax) and maximum concentration of drug (Cmax), and the extent and duration of the observed nonmonotonic return of PTH to baseline levels following JTT‐305/MK‐5442 administration.


Bulletin of Mathematical Biology | 2017

Mathematical Model of Bone Remodeling Captures the Antiresorptive and Anabolic Actions of Various Therapies

David S. Ross; Khamir Mehta; Antonio Cabal

A better understanding of the molecular pathways regulating the bone remodeling process should help in the development of new antiresorptive regulators and anabolic regulators, that is, regulators of bone resorption and of bone formation. Understanding the mechanisms by which parathyroid hormone (PTH) influences bone formation and how it switches from anabolic to catabolic action is important for treating osteoporosis (Poole and Reeve in Curr Opin Pharmacol 5:612–617, 2005). In this paper we describe a mathematical model of bone remodeling that incorporates, extends, and integrates several models of particular aspects of this biochemical system (Cabal et al. in J Bone Miner Res 28(8):1830–1836, 2013; Lemaire et al. in J Theor Biol 229:293–309, 2004; Peterson and Riggs in Bone 46:49–63, 2010; Raposo et al. in J Clin Endocrinol Metab 87(9):4330–4340, 2002; Ross et al. in J Disc Cont Dyn Sys Series B 17(6):2185–2200, 2012). We plan to use this model as a bone homeostasis platform to develop anabolic and antiresorptive compounds. The model will allow us to test hypotheses about the dynamics of compounds and to test the potential benefits of combination therapies. At the core of the model is the idealized account of osteoclast and osteoblast signaling given by Lemaire et al. (J Theor Biol 229:293–309, 2004). We have relaxed some of their assumptions about the roles of osteoprotegerin, transforming growth factor


Bone reports | 2017

Long-term treatment with odanacatib maintains normal trabecular biomechanical properties in ovariectomized adult monkeys as demonstrated by micro-CT-based finite element analysis

Antonio Cabal; Donald S. Williams; Richa Y. Jayakar; Jingru Zhang; Swanand Sardesai; Le T. Duong


Archive | 2014

State-of-the-Art Pharmacometric Models in Osteoporosis

Anna Kondic; Antonio Cabal; Ghassan N. Fayad; Khamir Mehta; Thomas Kerbusch; Teun M. Post

\upbeta


Archive | 2002

Multi-layer thermal actuator with optimized heater length and method of operating same

Antonio Cabal; Edward P. Furlani; John Andrew Lebens; David P. Trauernicht; David S. Ross


Archive | 2004

Tapered multi-layer thermal actuator and method of operating same

Christopher N. Delametter; Edward P. Furlani; John Andrew Lebens; David P. Trauernicht; Antonio Cabal; David S. Ross; Stephen Fullerton Pond

β, and receptor activator of nuclear factor

Collaboration


Dive into the Antonio Cabal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David S. Ross

Rochester Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Le T. Duong

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge