Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Conconi is active.

Publication


Featured researches published by Antonio Conconi.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast

Antonio Conconi; Vyacheslav A. Bespalov; Michael J. Smerdon

Nucleotide excision repair (NER) of UV-induced cyclobutane pyrimidine dimers (CPDs) was measured in the individual strands of transcriptionally active and inactive ribosomal genes of yeast. Ribosomal genes (rDNA) are present in multiple copies, but only a fraction of them is actively transcribed. Restriction enzyme digestion was used to specifically release the transcriptionally active fraction from yeast nuclei, and selective psoralen crosslinking was used to distinguish between active and inactive rDNA chromatin. Removal of CPDs was followed in both rDNA populations, and the data clearly show that strand-specific repair occurs in transcriptionally active rDNA while being absent in the inactive rDNA fraction. Thus, transcription-coupled repair occurs in RNA polymerase I-transcribed genes in yeast. Moreover, the nontranscribed strand of active rDNA is repaired faster than either strand of inactive rDNA, implying that NER has preferred access to the active, non-nucleosomal rDNA chromatin. Finally, restriction enzyme accessibility to active rDNA varies during NER, suggesting that there is a change in ribosomal gene chromatin structure during or soon after CPD removal.


Nature Protocols | 2006

High-throughput and sensitive assay to measure yeast cell growth: a bench protocol for testing genotoxic agents.

Martin Toussaint; Antonio Conconi

Intracellular metabolites and environmental agents continuously challenge the structural integrity of DNA. In the yeast Saccharomyces cerevisiae, the complete collection of open reading frame deletion mutants, in combination with powerful screening methods, allows for the comprehensive analyses of cellular responses to insult. We have developed a protocol to determine the sensitivity of growing yeast to DNA-damaging agents that is based on automatic measurements of the optical density of very small (100 μl) liquid cultures. This simple method is highly sensitive, provides quantifiable data and offers high-throughput screening capability. Starting with the treatment of cells with different doses of damaging agents, pre-prepared growing media containing 96-well plates are inoculated and cell population is automatically monitored every 10 min for 48 hours. With the aid of a multi-channel pipette, the sensitivity of a number of yeast strains to several concentrations of drug can be tested in triplicate in less then 4 hours.


The EMBO Journal | 1999

Tight correlation between inhibition of DNA repair in vitro and transcription factor IIIA binding in a 5S ribosomal RNA gene

Antonio Conconi; Xiaoqi Liu; Lilia Koriazova; Eric J. Ackerman; Michael J. Smerdon

UV‐induced photoproducts (cyclobutane pyrimidine dimers, CPDs) in DNA are removed by nucleotide excision repair (NER), and the presence of transcription factors on DNA can restrict the accessibility of NER enzymes. We have investigatigated the modulation of NER in a gene promoter using the Xenopus transcription factor IIIA (TFIIIA)–5S rDNA complex and Xenopus oocyte nuclear extracts. TFIIIA alters CPD formation primarily in the transcribed strand of the 50 bp internal control region (ICR) of 5S rDNA. During NER in vitro, CPD removal is reduced at most sites in both strands of the ICR when TFIIIA is bound. Efficient repair occurs just outside the TFIIIA‐binding site (within 10 bp), and in the absence of 5S rRNA transcription. Interestingly, three CPD sites within the ICR [+56, +75 (transcribed strand) and +73 (non‐transcribed strand)] are repaired rapidly when TFIIIA is bound, while CPDs within ∼5 bases of these sites are repaired much more slowly. CPDs at these three sites may partially displace TFIIIA, thereby enabling rapid repair. However, TFIIIA is not completely displaced during NER, at least at sites outside the ICR, even though the NER complex could be sterically hindered by TFIIIA. Such inefficient repair of transcription factor binding sites could increase mutation frequency in regulatory regions of genes.


Mutation Research-dna Repair | 2000

Mitotic viability and metabolic competence in UV-irradiated yeast cells.

Antonio Conconi; Pascale Jager-Vottero; Xiaoyi Zhang; Brian C. Beard; Michael J. Smerdon

Colony formation is the classic method for measuring survival of yeast cells. This method measures mitotic viability and can underestimate the fraction of cells capable of carrying out other DNA processing events. Here, we report an alternative method, based on cell metabolism, to determine the fraction of surviving cells after ultraviolet (UV) irradiation. The reduction of 2,3,5-triphenyl tetrazolium chloride (or TTC) to formazan in mitochondria was compared with cell colony formation and DNA repair capacity in wt cells and two repair-deficient strains (rad1Delta and rad7Delta). Both TTC reduction and cell colony formation gave a linear response with different ratios of mitotically viable cells and heat-inactivated cells. However, monitoring the formation of formazan in non-dividing yeast cells that are partially (rad7Delta) or totally (wt) proficient at DNA repair is a more accurate measure of cell survival after UV irradiation. Before repair of UV photoproducts (cis-syn cyclobutane pyrimidine dimers or CPDs) is complete, these two assays give very different results, implying that many damaged cells are metabolically competent but cannot replicate. For example, only 25% of the rad7Delta cells are mitotically viable after a UV dose of 12 J/m(2)75% of these cells are metabolically competent and remove over 55% of the CPDs from their genomic DNA. Moreover, repair of CPDs in wt cells dramatically decreases after the first few hours of liquid holding (L.H.; incubation in water) and correlates with a substantial decrease in cell metabolism over the same time period. In contrast, cell colony formation may be the more accurate indicator of cell survival after UV irradiation of rad1Delta cells (i.e., cells with little DNA repair activity). These results indicate that the metabolic competence of UV-irradiated, non-dividing yeast cells is a much better indicator of cell survival than mitotic viability in partially (or totally) repair proficient yeast cultures.


Molecular and Cellular Biology | 2008

Complementary Roles of Yeast Rad4p and Rad34p in Nucleotide Excision Repair of Active and Inactive rRNA Gene Chromatin

Maxime Tremblay; Yumin Teng; Michel Paquette; Raymond Waters; Antonio Conconi

ABSTRACT Nucleotide excision repair (NER) removes a plethora of DNA lesions. It is performed by a large multisubunit protein complex that finds and repairs damaged DNA in different chromatin contexts and nuclear domains. The nucleolus is the most transcriptionally active domain, and in yeast, transcription-coupled NER occurs in RNA polymerase I-transcribed genes (rDNA). Here we have analyzed the roles of two members of the xeroderma pigmentosum group C family of proteins, Rad4p and Rad34p, during NER in the active and inactive rDNA. We report that Rad4p is essential for repair in the intergenic spacer, the inactive rDNA coding region, and for strand-specific repair at the transcription initiation site, whereas Rad34p is not. Rad34p is necessary for transcription-coupled NER that starts about 40 nucleotides downstream of the transcription initiation site of the active rDNA, whereas Rad4p is not. Thus, although Rad4p and Rad34p share sequence homology, their roles in NER in the rDNA locus are almost entirely distinct and complementary. These results provide evidences that transcription-coupled NER and global genome NER participate in the removal of UV-induced DNA lesions from the transcribed strand of active rDNA. Furthermore, nonnucleosome rDNA is repaired faster than nucleosome rDNA, indicating that an open chromatin structure facilitates NER in vivo.


Molecular and Cellular Biology | 2005

Repair-Independent Chromatin Assembly onto Active Ribosomal Genes in Yeast after UV Irradiation

Antonio Conconi; Michel Paquette; Deirdre Fahy; Vyacheslav A. Bespalov; Michael J. Smerdon

ABSTRACT Chromatin rearrangements occur during repair of cyclobutane pyrimidine dimers (CPDs) by nucleotide excision repair (NER). Thereafter, the original structure must be restored to retain normal genomic functions. How NER proceeds through nonnucleosomal chromatin and how open chromatin is reestablished after repair are unknown. We analyzed NER in ribosomal genes (rDNA), which are present in multiple copies but only a fraction are actively transcribed and nonnucleosomal. We show that removal of CPDs is fast in the active rDNA and that chromatin reorganization occurs during NER. Furthermore, chromatin assembles on nonnucleosomal rDNA during the early events of NER but in the absence of DNA repair. The resumption of transcription after removal of CPDs correlates with the reappearance of nonnucleosomal chromatin. To date, only the passage of replication machinery was thought to package ribosomal genes in nucleosomes. In this report, we show that early events after formation of UV photoproducts in DNA also promote chromatin assembly.


Molecular and Cellular Biology | 2008

Deletion of Rnt1p Alters the Proportion of Open versus Closed rRNA Gene Repeats in Yeast

Mathieu Catala; Maxime Tremblay; Éric Samson; Antonio Conconi; Sherif Abou Elela

ABSTRACT In Saccharomyces cerevisiae, the double-stranded-RNA-specific RNase III (Rnt1p) is required for the processing of pre-rRNA and coprecipitates with transcriptionally active rRNA gene repeats. Here we show that Rnt1p physically interacts with RNA polymerase I (RNAPI) and its deletion decreases the transcription of the rRNA gene and increases the number of rRNA genes with an open chromatin structure. In contrast, depletion of ribosomal proteins or factors that impair RNAPI termination did not increase the number of open rRNA gene repeats, suggesting that changes in the ratio of open and closed rRNA gene chromatin is not due to a nonspecific response to ribosome depletion or impaired termination. The results demonstrate that defects in pre-rRNA processing can influence the chromatin structure of the rRNA gene arrays and reveal links among the rRNA gene chromatin, transcription, and processing.


Nucleic Acids Research | 2014

UV light-induced DNA lesions cause dissociation of yeast RNA polymerases-I and establishment of a specialized chromatin structure at rRNA genes

Maxime Tremblay; Romain Charton; Manuel Wittner; Geneviève Levasseur; Joachim Griesenbeck; Antonio Conconi

The cytotoxicity of UV light-induced DNA lesions results from their interference with transcription and replication. DNA lesions arrest elongating RNA polymerases, an event that triggers transcription-coupled nucleotide excision repair. Since arrested RNA polymerases reduce the accessibility of repair factors to DNA lesions, they might be displaced. The fate of arrested RNA polymerases-II at DNA lesions has been extensively studied, yielding partially contradictory results. Considerably less is known about RNA polymerases-I that transcribe nucleosomes-depleted rRNA genes at very high rate. To investigate the fate of arrested RNA polymerases-I at DNA lesions, chromatin-immunoprecipitation, electron microscopy, transcription run-on, psoralen-cross-linking and chromatin-endogenous cleavage were employed. We found that RNA polymerases-I density increased at the 5′-end of the gene, likely due to continued transcription initiation followed by elongation and pausing/release at the first DNA lesion. Most RNA polymerases-I dissociated downstream of the first DNA lesion, concomitant with chromatin closing that resulted from deposition of nucleosomes. Although nucleosomes were deposited, the high mobility group-box Hmo1 (component of actively transcribed rRNA genes) remained associated. After repair of DNA lesions, Hmo1 containing chromatin might help to restore transcription elongation and reopening of rRNA genes chromatin.


Biochemistry and Cell Biology | 2009

Nucleotide excision repair and photolyase repair of UV photoproducts in nucleosomes: assessing the existence of nucleosome and non-nucleosome rDNA chromatin in vivo.

Maxime Tremblay; Martin Toussaint; Annie D'amours; Antonio Conconi

The genome is organized into nuclear domains, which create microenvironments that favor distinct chromatin structures and functions (e.g., highly repetitive sequences, centromeres, telomeres, noncoding sequences, inactive genes, RNA polymerase II and III transcribed genes, and the nucleolus). Correlations have been drawn between gene silencing and proximity to a heterochromatic compartment. At the other end of the scale are ribosomal genes, which are transcribed at a very high rate by RNA polymerase I (~60% of total transcription), have a loose chromatin structure, and are clustered in the nucleolus. The rDNA sequences have 2 distinct structures: active rRNA genes, which have no nucleosomes; and inactive rRNA genes, which have nucleosomes. Like DNA transcription and replication, DNA repair is modulated by the structure of chromatin, and the kinetics of DNA repair vary among the nuclear domains. Although research on DNA repair in all chromosomal contexts is important to understand the mechanisms of genome maintenance, this review focuses on nucleotide excision repair and photolyase repair of UV photoproducts in the first-order packing of DNA in chromatin: the nucleosome. In addition, it summarizes the studies that have demonstrated the existence of the 2 rDNA chromatins, and the way this feature of the rDNA locus allows for direct comparison of DNA repair in 2 very different structures: nucleosome and non-nucleosome DNA.


DNA Repair | 2015

Nucleosome positioning, nucleotide excision repair and photoreactivation in Saccharomyces cerevisiae.

Laetitia Guintini; Romain Charton; François Peyresaubes; Fritz Thoma; Antonio Conconi

The position of nucleosomes on DNA participates in gene regulation and DNA replication. Nucleosomes can be repressors by limiting access of factors to regulatory sequences, or activators by facilitating binding of factors to exposed DNA sequences on the surface of the core histones. The formation of UV induced DNA lesions, like cyclobutane pyrimidine dimers (CPDs), is modulated by DNA bending around the core histones. Since CPDs are removed by nucleotide excision repair (NER) and photolyase repair, it is of paramount importance to understand how DNA damage and repair are tempered by the position of nucleosomes. In vitro, nucleosomes inhibit NER and photolyase repair. In vivo, nucleosomes slow down NER and considerably obstruct photoreactivation of CPDs. However, over-expression of photolyase allows repair of nucleosomal DNA in a second time scale. It is proposed that the intrinsic abilities of nucleosomes to move and transiently unwrap could facilitate damage recognition and repair in nucleosomal DNA.

Collaboration


Dive into the Antonio Conconi's collaboration.

Top Co-Authors

Avatar

Maxime Tremblay

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Michael J. Smerdon

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deirdre Fahy

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laetitia Guintini

Faculté de médecine – Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clarence A. Ryan

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Xiaoyi Zhang

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge