Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Corradi is active.

Publication


Featured researches published by Antonio Corradi.


IEEE Wireless Communications | 2006

Mobeyes: smart mobs for urban monitoring with a vehicular sensor network

Uichin Lee; Biao Zhou; Mario Gerla; Eugenio Magistretti; Paolo Bellavista; Antonio Corradi

Vehicular sensor networks are emerging as a new network paradigm of primary relevance, especially for proactively gathering monitoring information in urban environments. Vehicles typically have no strict constraints on processing power and storage capabilities. They can sense events (e.g., imaging from streets), process sensed data (e.g., recognizing license plates), and route messages to other vehicles (e.g., diffusing relevant notification to drivers or police agents). In this novel and challenging mobile environment, sensors can generate a sheer amount of data, and traditional sensor network approaches for data reporting become unfeasible. This article proposes MobEyes, an efficient lightweight support for proactive urban monitoring based on the primary idea of exploiting vehicle mobility to opportunistically diffuse summaries about sensed data. The reported experimental/analytic results show that MobEyes can harvest summaries and build a low-cost distributed index with reasonable completeness, good scalability, and limited overhead


ACM Computing Surveys | 2012

A survey of context data distribution for mobile ubiquitous systems

Paolo Bellavista; Antonio Corradi; Mario Fanelli; Luca Foschini

The capacity to gather and timely deliver to the service level any relevant information that can characterize the service-provisioning environment, such as computing resources/capabilities, physical device location, user preferences, and time constraints, usually defined as context-awareness, is widely recognized as a core function for the development of modern ubiquitous and mobile systems. Much work has been done to enable context-awareness and to ease the diffusion of context-aware services; at the same time, several middleware solutions have been designed to transparently implement context management and provisioning in the mobile system. However, to the best of our knowledge, an in-depth analysis of the context data distribution, namely, the function in charge of distributing context data to interested entities, is still missing. Starting from the core assumption that only effective and efficient context data distribution can pave the way to the deployment of truly context-aware services, this article aims at putting together current research efforts to derive an original and holistic view of the existing literature. We present a unified architectural model and a new taxonomy for context data distribution by considering and comparing a large number of solutions. Finally, based on our analysis, we draw some of the research challenges still unsolved and identify some possible directions for future work.


IEEE Transactions on Vehicular Technology | 2009

Dissemination and Harvesting of Urban Data Using Vehicular Sensing Platforms

Uichin Lee; Eugenio Magistretti; Mario Gerla; Paolo Bellavista; Antonio Corradi

Recent advances in vehicular communications make it possible to realize vehicular sensor networks, i.e., collaborative environments where mobile vehicles that are equipped with sensors of different nature (from toxic detectors to still/video cameras) interwork to implement monitoring applications. In particular, there is an increasing interest in proactive urban monitoring, where vehicles continuously sense events from urban streets, autonomously process sensed data (e.g., recognizing license plates), and, possibly, route messages to vehicles in their vicinity to achieve a common goal (e.g., to allow police agents to track the movements of specified cars). This challenging environment requires novel solutions with respect to those of more-traditional wireless sensor nodes. In fact, unlike conventional sensor nodes, vehicles exhibit constrained mobility, have no strict limits on processing power and storage capabilities, and host sensors that may generate sheer amounts of data, thus making already-known solutions for sensor network data reporting inapplicable. This paper describes MobEyes, which is an effective middleware that was specifically designed for proactive urban monitoring and exploits node mobility to opportunistically diffuse sensed data summaries among neighbor vehicles and to create a low-cost index to query monitoring data. We have thoroughly validated the original MobEyes protocols and demonstrated their effectiveness in terms of indexing completeness, harvesting time, and overhead. In particular, this paper includes (1) analytic models for MobEyes protocol performance and their consistency with simulation-based results, (2) evaluation of performance as a function of vehicle mobility, (3) effects of concurrent exploitation of multiple harvesting agents with single/multihop communications, (4) evaluation of network overhead and overall system stability, and (5) performance validation of MobEyes in a challenging urban tracking application where the police reconstruct the movements of a suspicious driver, e.g., by specifying the license number of a car.


IEEE Transactions on Software Engineering | 2003

Context-aware middleware for resource management in the wireless Internet

Paolo Bellavista; Antonio Corradi; Rebecca Montanari; Cesare Stefanelli

The provisioning of Web services over the wireless Internet introduces novel challenging issues for service design and implementation: from user/terminal mobility during service execution, to wide heterogeneity of portable access devices and unpredictable modifications in accessible resources. In this scenario, there are frequent provision-time changes in the context, defined as the logical set of accessible resources depending on client location, access terminal capabilities, and system/service management policies. The development of context-dependent services requires novel middlewares with full context visibility. We propose a middleware for context-aware resource management, called CARMEN, capable of supporting the automatic reconfiguration of wireless Internet services in response to context changes without any intervention on the service logic. CARMEN determines the context on the basis of metadata, which include declarative management policies and profiles for user preferences, terminal capabilities, and resource characteristics. In addition, CARMEN exploits the mobile agent technology to implement mobile middleware components that follow the provision-time movement of clients to support locally their customized service access. The proposed middleware shows how metadata and mobile agents can favor component reusability and automatic service reconfiguration, by reducing the development/ deployment complexity.


IEEE Computer | 2001

Mobile agent middleware for mobile computing

Paolo Bellavista; Antonio Corradi; Cesare Stefanelli

Mobile computing requires an advanced infrastructure that integrates suitable support protocols, mechanisms, and tools. This mobility middleware should dynamically reallocate and trace mobile users and terminals and permit communication and coordination of mobile entities. In addition, open and untrusted environments must overcome system heterogeneity and grant the appropriate security level. Solutions to these issues require compliance with standards to interoperate with different systems and legacy components and a reliable security infrastructure based on standard cryptographic mechanisms and tools. Many proposals suggest using mobile agent technology middleware to address these issues. A mobile agent moves entities in execution together with code and achieved state, making it possible to upgrade distributed computing environments without suspending service. We propose three mobile computing services: user virtual environment (UVE), mobile virtual terminal (MVT), and virtual resource management (VRM). UVE provides users with a uniform view of their working environments independent of current locations and specific terminals. MVT extends traditional terminal mobility by preserving the terminal execution state for restoration at new locations, including active processes and subscribed services. VRM permits mobile users and terminals to maintain access to resources and services by automatically requalifying the bindings and moving specific resources or services to permit load balancing and replication.


cluster computing and the grid | 2012

A Stable Network-Aware VM Placement for Cloud Systems

Ofer Biran; Antonio Corradi; Mario Fanelli; Luca Foschini; Alexander Nus; Danny Raz; Ezra Silvera

Virtual Machine (VM) placement has to carefully consider the aggregated resource consumption of co-located VMs in order to obey service level agreements at lower possible cost. In this paper, we focus on satisfying the traffic demands of the VMs in addition to CPU and memory requirements. This is a much more complex problem both due to its quadratic nature (being the communication between a pair of VMs) and since it involves many factors beyond the physical host, like the network topologies and the routing scheme. Moreover, traffic patterns may vary over time and predicting the resulting effect on the actual available bandwidth between hosts within the data center is extremely difficult. We address this problem by trying to allocate a placement that not only satisfies the predicted communication demand but is also resilient to demand time-variations. This gives rise to a new optimization problem that we call the Min Cut Ratio-aware VM Placement (MCRVMP). The general MCRVMP problem is NP-Hard, hence, we introduce several heuristics to solve it in reasonable time. We present extensive experimental results, associated with both placement computation and run-time performance under time-varying traffic demands, to show that our heuristics provide good results (compared to the optimal solution) for medium size data centers.


Future Generation Computer Systems | 2014

VM consolidation: A real case based on OpenStack Cloud

Antonio Corradi; Mario Fanelli; Luca Foschini

In recent years, Cloud computing has been emerging as the next big revolution in both computer networks and Web provisioning. Because of raised expectations, several vendors, such as Amazon and IBM, started designing, developing, and deploying Cloud solutions to optimize the usage of their own data centers, and some open-source solutions are also underway, such as Eucalyptus and OpenStack. Cloud architectures exploit virtualization techniques to provision multiple Virtual Machines (VMs) on the same physical host, so as to efficiently use available resources, for instance, to consolidate VMs in the minimal number of physical servers to reduce the runtime power consumption. VM consolidation has to carefully consider the aggregated resource consumption of co-located VMs, in order to avoid performance reductions and Service Level Agreement (SLA) violations. While various works have already treated the VM consolidation problem from a theoretical perspective, this paper focuses on it from a more practical viewpoint, with specific attention on the consolidation aspects related to power, CPU, and networking resource sharing. Moreover, the paper proposes a Cloud management platform to optimize VM consolidation along three main dimensions, namely power consumption, host resources, and networking. Reported experimental results point out that interferences between co-located VMs have to be carefully considered to avoid placement solutions that, although being feasible from a more theoretical viewpoint, cannot ensure VM provisioning with SLA guarantees. ? We discuss VM consolidation issues in Cloud Infrastructure as a Service (IaaS). ? We survey related works to clarify current state-of-the-art and ongoing research. ? We propose a management infrastructure for the open-source OpenStack Cloud. ? We highlight interferences due to network virtualization between co-located VMs.


IEEE Communications Magazine | 2013

Fostering participaction in smart cities: a geo-social crowdsensing platform

Giuseppe Cardone; Luca Foschini; Paolo Bellavista; Antonio Corradi; Cristian Borcea; Manoop Talasila; Reza Curtmola

This article investigates how and to what extent the power of collective although imprecise intelligence can be employed in smart cities. The main visionary goal is to automate the organization of spontaneous and impromptu collaborations of large groups of people participating in collective actions (i.e., participAct), such as in the notable case of urban crowdsensing. In a crowdsensing environment, people or their mobile devices act as both sensors that collect urban data and actuators that take actions in the city, possibly upon request. Managing the crowdsensing process is a challenging task spanning several socio-technical issues: from the characterization of the regions under control to the quantification of the sensing density needed to obtain a certain accuracy; from the evaluation of a good balance between sensing accuracy and resource usage (number of people involved, network bandwidth, battery usage, etc.) to the selection of good incentives for people to participAct (monetary, social, etc.). To tackle these problems, this article proposes a crowdsensing platform with three main original technical aspects: an innovative geo-social model to profile users along different variables, such as time, location, social interaction, service usage, and human activities; a matching algorithm to autonomously choose people to involve in participActions and to quantify the performance of their sensing; and a new Android-based platform to collect sensing data from smart phones, automatically or with user help, and to deliver sensing/actuation tasks to users.


IEEE Sensors Journal | 2013

Convergence of MANET and WSN in IoT Urban Scenarios

Paolo Bellavista; Giuseppe Cardone; Antonio Corradi; Luca Foschini

Ubiquitous smart environments, equipped with low-cost and easy-deployable wireless sensor networks (WSNs) and widespread mobile ad hoc networks (MANETs), are opening brand new opportunities in wide-scale urban monitoring. Indeed, MANET and WSN convergence paves the way for the development of brand new Internet of Things (IoT) communication platforms with a high potential for a wide range of applications in different domains. Urban data collection, i.e., the harvesting of monitoring data sensed by a large number of collaborating sensors, is a challenging task because of many open technical issues, from typical WSN limitations (bandwidth, energy, delivery time, etc.) to the lack of widespread WSN data collection standards, needed for practical deployment in existing and upcoming IoT scenarios. In particular, effective collection is crucial for classes of smart city services that require a timely delivery of urgent data such as environmental monitoring, homeland security, and city surveillance. After surveying the existing WSN interoperability efforts for urban sensing, this paper proposes an original solution to integrate and opportunistically exploit MANET overlays, impromptu, and collaboratively formed over WSNs, to boost urban data harvesting in IoT. Overlays are used to dynamically differentiate and fasten the delivery of urgent sensed data over low-latency MANET paths by integrating with latest emergent standards/specifications for WSN data collection. The reported experimental results show the feasibility and effectiveness (e.g., limited coordination overhead) of the proposed solution.


IEEE Concurrency | 1999

Diffusive load-balancing policies for dynamic applications

Antonio Corradi; Letizia Leonardi; Franco Zambonelli

To evaluate a set of local dynamic load-balancing strategies inspired by diffusion and characterized by different scopes of locality, the authors compare the effect of application dynamicity on performance. The algorithms used achieve the load balancing goal by only using load information belonging to a restricted space and by composing independent local actions.

Collaboration


Dive into the Antonio Corradi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franco Zambonelli

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge